Cargando…
A modular framework for biomedical concept recognition
BACKGROUND: Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for...
Autores principales: | Campos, David, Matos, Sérgio, Oliveira, José Luís |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849280/ https://www.ncbi.nlm.nih.gov/pubmed/24063607 http://dx.doi.org/10.1186/1471-2105-14-281 |
Ejemplares similares
-
Gimli: open source and high-performance biomedical name recognition
por: Campos, David, et al.
Publicado: (2013) -
TrigNER: automatically optimized biomedical event trigger recognition on scientific documents
por: Campos, David, et al.
Publicado: (2014) -
NOBLE – Flexible concept recognition for large-scale biomedical natural language processing
por: Tseytlin, Eugene, et al.
Publicado: (2016) -
Concept-based query expansion for retrieving gene related publications from MEDLINE
por: Matos, Sérgio, et al.
Publicado: (2010) -
tidybulk: an R tidy framework for modular transcriptomic data analysis
por: Mangiola, Stefano, et al.
Publicado: (2021)