Cargando…

The unique evolution of the programmed cell death 4 protein in plants

BACKGROUND: The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Shijun, Liu, Renyi, Gallie, Daniel R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850090/
https://www.ncbi.nlm.nih.gov/pubmed/24041411
http://dx.doi.org/10.1186/1471-2148-13-199
_version_ 1782294035593953280
author Cheng, Shijun
Liu, Renyi
Gallie, Daniel R
author_facet Cheng, Shijun
Liu, Renyi
Gallie, Daniel R
author_sort Cheng, Shijun
collection PubMed
description BACKGROUND: The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic translation initiation factor (eIF) 4G, which serves as a scaffold protein to assemble several initiation factors needed for the recruitment of the 40S ribosomal subunit to an mRNA. Although eIF4A is an ATP-dependent RNA helicase that binds the MA3 domain of eIF4G to promote translation initiation, binding of eIF4A to the MA3 domains of PDCD4 inhibits protein synthesis. Genes encoding PDCD4 are present in many lower eukaryotes and in plants, but PDCD4 in higher plants is unique in that it contains four MA3 domains and has been implicated in ethylene signaling and abiotic stress responses. Here, we examine the evolution of PDCD4 in plants. RESULTS: In older algal lineages, PDCD4 contains two MA3 domains similar to the homolog in animals. By the appearance of early land plants, however, PDCD4 is composed of four MA3 domains which likely is the result of a duplication of the two MA3 domain form of the protein. Evidence from fresh water algae, from which land plants evolved, suggests that the duplication event occurred prior to the colonization of land. PDCD4 in more recently evolved chlorophytes also contains four MA3 domains but this may have resulted from an independent duplication event. Expansion and divergence of the PDCD4 gene family occurred during land plant evolution with the appearance of a distinct gene member following the evolution of basal angiosperms. CONCLUSIONS: The appearance of a unique form of PDCD4 in plants correlates with the appearance of components of the ethylene signaling pathway, suggesting that it may represent the adaptation of an existing protein involved in programmed cell death to one that functions in abiotic stress responses through hormone signaling.
format Online
Article
Text
id pubmed-3850090
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-38500902013-12-05 The unique evolution of the programmed cell death 4 protein in plants Cheng, Shijun Liu, Renyi Gallie, Daniel R BMC Evol Biol Research Article BACKGROUND: The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic translation initiation factor (eIF) 4G, which serves as a scaffold protein to assemble several initiation factors needed for the recruitment of the 40S ribosomal subunit to an mRNA. Although eIF4A is an ATP-dependent RNA helicase that binds the MA3 domain of eIF4G to promote translation initiation, binding of eIF4A to the MA3 domains of PDCD4 inhibits protein synthesis. Genes encoding PDCD4 are present in many lower eukaryotes and in plants, but PDCD4 in higher plants is unique in that it contains four MA3 domains and has been implicated in ethylene signaling and abiotic stress responses. Here, we examine the evolution of PDCD4 in plants. RESULTS: In older algal lineages, PDCD4 contains two MA3 domains similar to the homolog in animals. By the appearance of early land plants, however, PDCD4 is composed of four MA3 domains which likely is the result of a duplication of the two MA3 domain form of the protein. Evidence from fresh water algae, from which land plants evolved, suggests that the duplication event occurred prior to the colonization of land. PDCD4 in more recently evolved chlorophytes also contains four MA3 domains but this may have resulted from an independent duplication event. Expansion and divergence of the PDCD4 gene family occurred during land plant evolution with the appearance of a distinct gene member following the evolution of basal angiosperms. CONCLUSIONS: The appearance of a unique form of PDCD4 in plants correlates with the appearance of components of the ethylene signaling pathway, suggesting that it may represent the adaptation of an existing protein involved in programmed cell death to one that functions in abiotic stress responses through hormone signaling. BioMed Central 2013-09-16 /pmc/articles/PMC3850090/ /pubmed/24041411 http://dx.doi.org/10.1186/1471-2148-13-199 Text en Copyright © 2013 Cheng et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Cheng, Shijun
Liu, Renyi
Gallie, Daniel R
The unique evolution of the programmed cell death 4 protein in plants
title The unique evolution of the programmed cell death 4 protein in plants
title_full The unique evolution of the programmed cell death 4 protein in plants
title_fullStr The unique evolution of the programmed cell death 4 protein in plants
title_full_unstemmed The unique evolution of the programmed cell death 4 protein in plants
title_short The unique evolution of the programmed cell death 4 protein in plants
title_sort unique evolution of the programmed cell death 4 protein in plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850090/
https://www.ncbi.nlm.nih.gov/pubmed/24041411
http://dx.doi.org/10.1186/1471-2148-13-199
work_keys_str_mv AT chengshijun theuniqueevolutionoftheprogrammedcelldeath4proteininplants
AT liurenyi theuniqueevolutionoftheprogrammedcelldeath4proteininplants
AT galliedanielr theuniqueevolutionoftheprogrammedcelldeath4proteininplants
AT chengshijun uniqueevolutionoftheprogrammedcelldeath4proteininplants
AT liurenyi uniqueevolutionoftheprogrammedcelldeath4proteininplants
AT galliedanielr uniqueevolutionoftheprogrammedcelldeath4proteininplants