Cargando…

Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope

The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM el...

Descripción completa

Detalles Bibliográficos
Autor principal: Costa, Kevin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850842/
https://www.ncbi.nlm.nih.gov/pubmed/15096710
http://dx.doi.org/10.1155/2004/482680
_version_ 1782294171302756352
author Costa, Kevin D.
author_facet Costa, Kevin D.
author_sort Costa, Kevin D.
collection PubMed
description The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. This chapter provides a background on the principles and practice of AFM elastography and reviews the literature comparing cell mechanics in normal and diseased states, making a case for the use of such measurements as disease markers. Emphasis is placed on the need for more comprehensive and detailed quantification of cell biomechanical properties beyond the current standard methods of analysis. A number of technical and practical hurdles have yet to be overcome before the method can be of clinical use. However, the future holds great promise for AFM elastography of living cells to provide novel biomechanical markers that will enhance the detection, diagnosis, and treatment of disease.
format Online
Article
Text
id pubmed-3850842
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher IOS Press
record_format MEDLINE/PubMed
spelling pubmed-38508422013-12-17 Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope Costa, Kevin D. Dis Markers Other The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. This chapter provides a background on the principles and practice of AFM elastography and reviews the literature comparing cell mechanics in normal and diseased states, making a case for the use of such measurements as disease markers. Emphasis is placed on the need for more comprehensive and detailed quantification of cell biomechanical properties beyond the current standard methods of analysis. A number of technical and practical hurdles have yet to be overcome before the method can be of clinical use. However, the future holds great promise for AFM elastography of living cells to provide novel biomechanical markers that will enhance the detection, diagnosis, and treatment of disease. IOS Press 2004 2004-04-21 /pmc/articles/PMC3850842/ /pubmed/15096710 http://dx.doi.org/10.1155/2004/482680 Text en Copyright © 2004 Hindawi Publishing Corporation.
spellingShingle Other
Costa, Kevin D.
Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope
title Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope
title_full Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope
title_fullStr Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope
title_full_unstemmed Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope
title_short Single-Cell Elastography: Probing for Disease with the Atomic Force Microscope
title_sort single-cell elastography: probing for disease with the atomic force microscope
topic Other
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850842/
https://www.ncbi.nlm.nih.gov/pubmed/15096710
http://dx.doi.org/10.1155/2004/482680
work_keys_str_mv AT costakevind singlecellelastographyprobingfordiseasewiththeatomicforcemicroscope