Cargando…
A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks
BACKGROUND: In recent years, the use and importance of predicted protein residue-residue contacts has grown considerably with demonstrated applications such as drug design, protein tertiary structure prediction and model quality assessment. Nevertheless, reported accuracies in the range of 25-35% st...
Autores principales: | Eickholt, Jesse, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850995/ https://www.ncbi.nlm.nih.gov/pubmed/24267585 http://dx.doi.org/10.1186/1471-2105-14-S14-S12 |
Ejemplares similares
-
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks
por: Adhikari, Badri, et al.
Publicado: (2018) -
A conformation ensemble approach to protein residue-residue contact
por: Eickholt, Jesse, et al.
Publicado: (2011) -
Benchmarking Deep Networks for Predicting Residue-Specific Quality of Individual Protein Models in CASP11
por: Liu, Tong, et al.
Publicado: (2016) -
DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning
por: Quadir, Farhan, et al.
Publicado: (2021) -
A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers
por: Roy, Raj S, et al.
Publicado: (2022)