Cargando…

Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods

Lipids comprise the bulk of the dry mass of the brain. In addition to providing structural integrity to membranes, insulation to cells and acting as a source of energy, lipids can be rapidly converted to mediators of inflammation or to signaling molecules that control molecular and cellular events i...

Descripción completa

Detalles Bibliográficos
Autores principales: Fonteh, Alfred N., Harrington, Robert J., Huhmer, Andreas F., Biringer, Roger G., Riggins, James N., Harrington, Michael G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851111/
https://www.ncbi.nlm.nih.gov/pubmed/16410651
http://dx.doi.org/10.1155/2006/202938
_version_ 1782294226728386560
author Fonteh, Alfred N.
Harrington, Robert J.
Huhmer, Andreas F.
Biringer, Roger G.
Riggins, James N.
Harrington, Michael G.
author_facet Fonteh, Alfred N.
Harrington, Robert J.
Huhmer, Andreas F.
Biringer, Roger G.
Riggins, James N.
Harrington, Michael G.
author_sort Fonteh, Alfred N.
collection PubMed
description Lipids comprise the bulk of the dry mass of the brain. In addition to providing structural integrity to membranes, insulation to cells and acting as a source of energy, lipids can be rapidly converted to mediators of inflammation or to signaling molecules that control molecular and cellular events in the brain. The advent of soft ionization procedures such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) have made it possible for compositional studies of the diverse lipid structures that are present in brain. These include phospholipids, ceramides, sphingomyelin, cerebrosides, cholesterol and their oxidized derivatives. Lipid analyses have delineated metabolic defects in disease conditions including mental retardation, Parkinson's Disease (PD), schizophrenia, Alzheimer's Disease (AD), depression, brain development, and ischemic stroke. In this review, we examine the structure of the major lipid classes in the brain, describe methods used for their characterization, and evaluate their role in neurological diseases. The potential utility of characterizing lipid markers in the brain, with specific emphasis on disease mechanisms, will be discussed. Additionally, we describe several proteomic strategies for characterizing lipid-metabolizing proteins in human cerebrospinal fluid (CSF). These proteins may be potential therapeutic targets since they transport lipids required for neuronal growth or convert lipids into molecules that control brain physiology. Combining lipidomics and proteomics will enhance existing knowledge of disease pathology and increase the likelihood of discovering specific markers and biochemical mechanisms of brain diseases.
format Online
Article
Text
id pubmed-3851111
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher IOS Press
record_format MEDLINE/PubMed
spelling pubmed-38511112013-12-18 Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods Fonteh, Alfred N. Harrington, Robert J. Huhmer, Andreas F. Biringer, Roger G. Riggins, James N. Harrington, Michael G. Dis Markers Other Lipids comprise the bulk of the dry mass of the brain. In addition to providing structural integrity to membranes, insulation to cells and acting as a source of energy, lipids can be rapidly converted to mediators of inflammation or to signaling molecules that control molecular and cellular events in the brain. The advent of soft ionization procedures such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) have made it possible for compositional studies of the diverse lipid structures that are present in brain. These include phospholipids, ceramides, sphingomyelin, cerebrosides, cholesterol and their oxidized derivatives. Lipid analyses have delineated metabolic defects in disease conditions including mental retardation, Parkinson's Disease (PD), schizophrenia, Alzheimer's Disease (AD), depression, brain development, and ischemic stroke. In this review, we examine the structure of the major lipid classes in the brain, describe methods used for their characterization, and evaluate their role in neurological diseases. The potential utility of characterizing lipid markers in the brain, with specific emphasis on disease mechanisms, will be discussed. Additionally, we describe several proteomic strategies for characterizing lipid-metabolizing proteins in human cerebrospinal fluid (CSF). These proteins may be potential therapeutic targets since they transport lipids required for neuronal growth or convert lipids into molecules that control brain physiology. Combining lipidomics and proteomics will enhance existing knowledge of disease pathology and increase the likelihood of discovering specific markers and biochemical mechanisms of brain diseases. IOS Press 2006 2005-12-22 /pmc/articles/PMC3851111/ /pubmed/16410651 http://dx.doi.org/10.1155/2006/202938 Text en Copyright © 2006 Hindawi Publishing Corporation.
spellingShingle Other
Fonteh, Alfred N.
Harrington, Robert J.
Huhmer, Andreas F.
Biringer, Roger G.
Riggins, James N.
Harrington, Michael G.
Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods
title Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods
title_full Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods
title_fullStr Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods
title_full_unstemmed Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods
title_short Identification of Disease Markers in Human Cerebrospinal Fluid Using Lipidomic and Proteomic Methods
title_sort identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods
topic Other
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851111/
https://www.ncbi.nlm.nih.gov/pubmed/16410651
http://dx.doi.org/10.1155/2006/202938
work_keys_str_mv AT fontehalfredn identificationofdiseasemarkersinhumancerebrospinalfluidusinglipidomicandproteomicmethods
AT harringtonrobertj identificationofdiseasemarkersinhumancerebrospinalfluidusinglipidomicandproteomicmethods
AT huhmerandreasf identificationofdiseasemarkersinhumancerebrospinalfluidusinglipidomicandproteomicmethods
AT biringerrogerg identificationofdiseasemarkersinhumancerebrospinalfluidusinglipidomicandproteomicmethods
AT rigginsjamesn identificationofdiseasemarkersinhumancerebrospinalfluidusinglipidomicandproteomicmethods
AT harringtonmichaelg identificationofdiseasemarkersinhumancerebrospinalfluidusinglipidomicandproteomicmethods