Cargando…

In vitro antibacterial activity of Tabernaemontana alternifolia (Roxb) stem bark aqueous extracts against clinical isolates of methicillin resistant Staphylococcus aureus

BACKGROUND: The rise of antibiotic resistance among methicillin resistant Staphylococcus aureus (MRSA), have caused concerns for the treatment of MRSA infections. Hence, search for an alternative therapy for these infections is inevitable. Folk Indian medicine refers to the use of leaf and stem bark...

Descripción completa

Detalles Bibliográficos
Autores principales: Marathe, Nachiket P, Rasane, Mandar H, Kumar, Himanshu, Patwardhan, Ankur A, Shouche, Yogesh S, Diwanay, Sham S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851168/
https://www.ncbi.nlm.nih.gov/pubmed/24066905
http://dx.doi.org/10.1186/1476-0711-12-26
Descripción
Sumario:BACKGROUND: The rise of antibiotic resistance among methicillin resistant Staphylococcus aureus (MRSA), have caused concerns for the treatment of MRSA infections. Hence, search for an alternative therapy for these infections is inevitable. Folk Indian medicine refers to the use of leaf and stem bark powder of Tabernaemontana alternifolia (Roxb) in treatment of skin infections, but no scientific report establishes its antibacterial activity. METHODS: Direct aqueous extracts and sequential aqueous extracts of the stem bark of T. alternifolia (using petroleum ether and ethyl acetate as other solvents) were prepared by soxhlet extraction. The antibiotic sensitivity profiles of the clinical isolates were determined against 18 antibiotics using disc diffusion method. The isolates were identified by 16S rRNA gene sequencing. The methicillin resistance among S. aureus (MRSA) was confirmed by PCR amplification of mecA gene. The disc diffusion method was used to determine the antibacterial activity of the extracts. The micro-dilution method was used to determine the minimum inhibitory concentration (MIC) of the extract against the test organism. To further evaluate the therapeutic potential of the extract, cell cytotoxicity was checked on Vero cells by MTT assay. Chemical profiling of the extract was done by HPTLC method. RESULTS: The aqueous extracts of T. alternifolia stem bark exhibited antibacterial activity against Gram-positive microorganisms, particularly against clinical isolates of MRSA and vancomycin resistant S. aureus (VRSA). The minimum inhibitory concentration (MIC) of extract against the isolates ranged from 600–800 μg/ml. The extract did not exhibit cytotoxic activity against Vero cells even at the concentration of 4 mg/ml. The chemical profiling revealed presence of alkaloids, flavonoids, coumarins, saponins and steroids. Petroleum ether and ethyl acetate extracts did not exhibit antibacterial activity. CONCLUSION: Our results offer a scientific basis for the traditional use of T. alternifolia in the treatment of skin infections, showing that the plant extract has an enormous potential as a prospective alternative therapy against MRSA skin infections. The present study lays the basis for future studies, to validate the possible use of T. alternifolia as a candidate in the treatment of MRSA infections.