Cargando…
Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models
BACKGROUND: Artificial neural networks (ANN) mimic the function of the human brain and are capable of performing massively parallel computations for data processing and knowledge representation. ANN can capture nonlinear relationships between predictors and responses and can adaptively learn complex...
Autores principales: | Okut, Hayrettin, Wu, Xiao-Liao, Rosa, Guilherme JM, Bauck, Stewart, Woodward, Brent W, Schnabel, Robert D, Taylor, Jeremy F, Gianola, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851253/ https://www.ncbi.nlm.nih.gov/pubmed/24024641 http://dx.doi.org/10.1186/1297-9686-45-34 |
Ejemplares similares
-
Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
por: Gianola, Daniel, et al.
Publicado: (2011) -
Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation
por: Saatchi, Mahdi, et al.
Publicado: (2011) -
Candidate lethal haplotypes and causal mutations in Angus cattle
por: Hoff, Jesse L., et al.
Publicado: (2017) -
Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data
por: Felipe, Vivian PS, et al.
Publicado: (2014) -
A novel analytical method, Birth Date Selection Mapping, detects response of the Angus (Bos taurus) genome to selection on complex traits
por: Decker, Jared E, et al.
Publicado: (2012)