Cargando…
Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure
BACKGROUND: Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. OBJECTIVES: Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic struct...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851284/ https://www.ncbi.nlm.nih.gov/pubmed/24088372 http://dx.doi.org/10.1186/1743-8977-10-47 |
_version_ | 1782294261930131456 |
---|---|
author | Zhao, Bo Wang, Xue-Qing Wang, Xiao-You Zhang, Hua Dai, Wen-Bing Wang, Jun Zhong, Zhen-Lin Wu, Hou-Nan Zhang, Qiang |
author_facet | Zhao, Bo Wang, Xue-Qing Wang, Xiao-You Zhang, Hua Dai, Wen-Bing Wang, Jun Zhong, Zhen-Lin Wu, Hou-Nan Zhang, Qiang |
author_sort | Zhao, Bo |
collection | PubMed |
description | BACKGROUND: Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. OBJECTIVES: Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared. METHODS: In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice. RESULTS: All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs. CONCLUSIONS: These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more scientific understandings on the nanotoxicity of amphiphilic polymeric micelles. |
format | Online Article Text |
id | pubmed-3851284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38512842013-12-06 Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure Zhao, Bo Wang, Xue-Qing Wang, Xiao-You Zhang, Hua Dai, Wen-Bing Wang, Jun Zhong, Zhen-Lin Wu, Hou-Nan Zhang, Qiang Part Fibre Toxicol Research BACKGROUND: Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. OBJECTIVES: Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared. METHODS: In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice. RESULTS: All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs. CONCLUSIONS: These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more scientific understandings on the nanotoxicity of amphiphilic polymeric micelles. BioMed Central 2013-10-03 /pmc/articles/PMC3851284/ /pubmed/24088372 http://dx.doi.org/10.1186/1743-8977-10-47 Text en Copyright © 2013 Zhao et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Zhao, Bo Wang, Xue-Qing Wang, Xiao-You Zhang, Hua Dai, Wen-Bing Wang, Jun Zhong, Zhen-Lin Wu, Hou-Nan Zhang, Qiang Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
title | Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
title_full | Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
title_fullStr | Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
title_full_unstemmed | Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
title_short | Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
title_sort | nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851284/ https://www.ncbi.nlm.nih.gov/pubmed/24088372 http://dx.doi.org/10.1186/1743-8977-10-47 |
work_keys_str_mv | AT zhaobo nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT wangxueqing nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT wangxiaoyou nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT zhanghua nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT daiwenbing nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT wangjun nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT zhongzhenlin nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT wuhounan nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure AT zhangqiang nanotoxicitycomparisonoffouramphiphilicpolymericmicelleswithsimilarhydrophilicorhydrophobicstructure |