Cargando…

Systems Biology Profiling of AMD on the Basis of Gene Expression

Genetic pathways underlying the initiation and progression of age-related macular degeneration (AMD) have not been yet sufficiently revealed, and the correlations of AMD's genotypes, phenotypes, and disease spectrum are still awaiting resolution. We are tackling both problems with systems biolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu-Asab, Mones S., Salazar, Jose, Tuo, Jingsheng, Chan, Chi-Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851728/
https://www.ncbi.nlm.nih.gov/pubmed/24349763
http://dx.doi.org/10.1155/2013/453934
Descripción
Sumario:Genetic pathways underlying the initiation and progression of age-related macular degeneration (AMD) have not been yet sufficiently revealed, and the correlations of AMD's genotypes, phenotypes, and disease spectrum are still awaiting resolution. We are tackling both problems with systems biology phylogenetic parsimony analysis. Gene expression data (GSE29801: NCBI, Geo) of macular and extramacular specimens of the retinas and retinal pigment epithelium (RPE) choroid complexes representing dry AMD without geographic atrophy (GA), choroidal neovascularization (CNV), GA, as well as pre-AMD and subclinical pre-AMD were polarized against their respective normal specimens and then processed through the parsimony program MIX to produce phylogenetic cladograms. Gene lists from cladograms' nodes were processed in Genomatix GePS to reveal the affected signaling pathway networks. Cladograms exposed a highly heterogeneous transcriptomic profiles within all the conventional phenotypes. Moreover, clades and nodal synapomorphies did not support the classical AMD phenotypes as valid transcriptomal genotypes. Gene lists defined by cladogram nodes showed that the AMD-related deregulations occurring in the neural retina were different from those in RPE-choroidal tissue. Our analysis suggests a more complex transcriptional profile of the phenotypes than expected. Evaluation of the disease in much earlier stages is needed to elucidate the initial events of AMD.