Cargando…
Machine Learning for Automatic Prediction of the Quality of Electrophysiological Recordings
The quality of electrophysiological recordings varies a lot due to technical and biological variability and neuroscientists inevitably have to select “good” recordings for further analyses. This procedure is time-consuming and prone to selection biases. Here, we investigate replacing human decisions...
Autores principales: | Nowotny, Thomas, Rospars, Jean-Pierre, Martinez, Dominique, Elbanna, Shereen, Anton, Sylvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851757/ https://www.ncbi.nlm.nih.gov/pubmed/24324634 http://dx.doi.org/10.1371/journal.pone.0080838 |
Ejemplares similares
-
Competition-Based Model of Pheromone Component Ratio Detection in the Moth
por: Zavada, Andrei, et al.
Publicado: (2011) -
Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings
por: Rossant, Cyrille, et al.
Publicado: (2010) -
Multiphasic On/Off Pheromone Signalling in Moths as Neural Correlates of a Search Strategy
por: Martinez, Dominique, et al.
Publicado: (2013) -
A computational model of the moth macroglomerular complex
por: Belmabrouk, Hana, et al.
Publicado: (2011) -
Primer on Machine Learning in Electrophysiology
por: Loeffler, Shane E, et al.
Publicado: (2023)