Cargando…
A structure-guided approach for protein pocket modeling and affinity prediction
Binding affinity prediction is frequently addressed using computational models constructed solely with molecular structure and activity data. We present a hybrid structure-guided strategy that combines molecular similarity, docking, and multiple-instance learning such that information from protein s...
Autores principales: | Varela, Rocco, Cleves, Ann E., Spitzer, Russell, Jain, Ajay N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851759/ https://www.ncbi.nlm.nih.gov/pubmed/24214361 http://dx.doi.org/10.1007/s10822-013-9688-9 |
Ejemplares similares
-
Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose
por: Cleves, Ann E., et al.
Publicado: (2018) -
Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock
por: Cleves, Ann E., et al.
Publicado: (2015) -
Chemical and protein structural basis for biological crosstalk between PPARα and COX enzymes
por: Cleves, Ann E., et al.
Publicado: (2014) -
Iterative Refinement of
a Binding Pocket Model: Active Computational Steering of Lead Optimization
por: Varela, Rocco, et al.
Publicado: (2012) -
Extrapolative prediction using physically-based QSAR
por: Cleves, Ann E., et al.
Publicado: (2016)