Cargando…

Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10

Glioma is the most frequent primary brain tumor. Recently, the upregulation of microRNA (miR)-23a was found to be associated with glioma, but the molecular mechanism by which miR-23a promotes glioma growth remains to be unveiled. In the present study, we found that miR-23a was significantly upregula...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xing, Chen, Dan, Cui, Yanhui, Li, Zhiyuan, Huang, Jufang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851882/
https://www.ncbi.nlm.nih.gov/pubmed/24305689
http://dx.doi.org/10.1038/srep03423
Descripción
Sumario:Glioma is the most frequent primary brain tumor. Recently, the upregulation of microRNA (miR)-23a was found to be associated with glioma, but the molecular mechanism by which miR-23a promotes glioma growth remains to be unveiled. In the present study, we found that miR-23a was significantly upregulated in glioma tissues compared to their matched adjacent tissues. miR-23a was also highly expressed in glioma cell lines SHG44, U251, and U87 cells. Moreover, we identified homeobox D10 (HOXD10) as a novel target for miR-23a. The expression of HOXD10 was significantly reduced in glioma tissues and cell lines, and miR-23a negatively regulates the protein expression of HOXD10 in U251 and U87 cells. We further showed that miRNA-23a promoted U251 and U87 cell invasion, at least partially, by directly targeting HOXD10 and further modulating MMP-14. These findings suggest that miR-23a may serve as a promising therapeutic target for glioma.