Cargando…

Genome-wide probabilistic reconciliation analysis across vertebrates

Gene duplication is considered to be a major driving force in evolution that enables the genome of a species to acquire new functions. A reconciliation - a mapping of gene tree vertices to the edges or vertices of a species tree - explains where gene duplications have occurred on the species tree. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmudi, Owais, Sjöstrand, Joel, Sennblad, Bengt, Lagergren, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852046/
https://www.ncbi.nlm.nih.gov/pubmed/24564421
http://dx.doi.org/10.1186/1471-2105-14-S15-S10
Descripción
Sumario:Gene duplication is considered to be a major driving force in evolution that enables the genome of a species to acquire new functions. A reconciliation - a mapping of gene tree vertices to the edges or vertices of a species tree - explains where gene duplications have occurred on the species tree. In this study, we sample reconciliations from a posterior over reconciliations, gene trees, edge lengths and other parameters, given a species tree and gene sequences. We employ a Bayesian analysis tool, based on the probabilistic model DLRS that integrates gene duplication, gene loss and sequence evolution under a relaxed molecular clock for substitution rates, to obtain this posterior. By applying these methods, we perform a genome-wide analysis of a nine species dataset, OPTIC, and conclude that for many gene families, the most parsimonious reconciliation (MPR) - a reconciliation that minimizes the number of duplications - is far from the correct explanation of the evolutionary history. For the given dataset, we observe that approximately 19% of the sampled reconciliations are different from MPR. This is in clear contrast with previous estimates, based on simpler models and less realistic assumptions, according to which 98% of the reconciliations can be expected to be identical to MPR. We also generate heatmaps showing where in the species trees duplications have been most frequent during the evolution of these species.