Cargando…
Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection
Staphylococcus aureus is a common commensal organism in humans and a major cause of bacteremia and hospital acquired infection. Because of the spread of strains resistant to antibiotics, these infections are becoming more difficult to treat. Therefore, exploration of anti-staphylococcal vaccines is...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852261/ https://www.ncbi.nlm.nih.gov/pubmed/24324681 http://dx.doi.org/10.1371/journal.pone.0081212 |
_version_ | 1782478636502220800 |
---|---|
author | Zuo, Qian-Fei Yang, Liu-Yang Feng, Qiang Lu, Dong-Shui Dong, Yan-Dong Cai, Chang-Zhi Wu, Yi Guo, Ying Gu, Jiang Zeng, Hao Zou, Quan-Ming |
author_facet | Zuo, Qian-Fei Yang, Liu-Yang Feng, Qiang Lu, Dong-Shui Dong, Yan-Dong Cai, Chang-Zhi Wu, Yi Guo, Ying Gu, Jiang Zeng, Hao Zou, Quan-Ming |
author_sort | Zuo, Qian-Fei |
collection | PubMed |
description | Staphylococcus aureus is a common commensal organism in humans and a major cause of bacteremia and hospital acquired infection. Because of the spread of strains resistant to antibiotics, these infections are becoming more difficult to treat. Therefore, exploration of anti-staphylococcal vaccines is currently a high priority. Iron surface determinant B (IsdB) is an iron-regulated cell wall-anchored surface protein of S. aureus. Alpha-toxin (Hla) is a secreted cytolytic pore-forming toxin. Previous studies reported that immunization with IsdB or Hla protected animals against S. aureus infection. To develop a broadly protective vaccine, we constructed chimeric vaccines based on IsdB and Hla. Immunization with the chimeric bivalent vaccine induced strong antibody and T cell responses. When the protective efficacy of the chimeric bivalent vaccine was compared to that of individual proteins in a murine model of systemic S. aureus infection, the bivalent vaccine showed a stronger protective immune response than the individual proteins (IsdB or Hla). Based on the results presented here, the chimeric bivalent vaccine affords higher levels of protection against S. aureus and has potential as a more effective candidate vaccine. |
format | Online Article Text |
id | pubmed-3852261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38522612013-12-09 Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection Zuo, Qian-Fei Yang, Liu-Yang Feng, Qiang Lu, Dong-Shui Dong, Yan-Dong Cai, Chang-Zhi Wu, Yi Guo, Ying Gu, Jiang Zeng, Hao Zou, Quan-Ming PLoS One Research Article Staphylococcus aureus is a common commensal organism in humans and a major cause of bacteremia and hospital acquired infection. Because of the spread of strains resistant to antibiotics, these infections are becoming more difficult to treat. Therefore, exploration of anti-staphylococcal vaccines is currently a high priority. Iron surface determinant B (IsdB) is an iron-regulated cell wall-anchored surface protein of S. aureus. Alpha-toxin (Hla) is a secreted cytolytic pore-forming toxin. Previous studies reported that immunization with IsdB or Hla protected animals against S. aureus infection. To develop a broadly protective vaccine, we constructed chimeric vaccines based on IsdB and Hla. Immunization with the chimeric bivalent vaccine induced strong antibody and T cell responses. When the protective efficacy of the chimeric bivalent vaccine was compared to that of individual proteins in a murine model of systemic S. aureus infection, the bivalent vaccine showed a stronger protective immune response than the individual proteins (IsdB or Hla). Based on the results presented here, the chimeric bivalent vaccine affords higher levels of protection against S. aureus and has potential as a more effective candidate vaccine. Public Library of Science 2013-12-04 /pmc/articles/PMC3852261/ /pubmed/24324681 http://dx.doi.org/10.1371/journal.pone.0081212 Text en © 2013 Zuo et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zuo, Qian-Fei Yang, Liu-Yang Feng, Qiang Lu, Dong-Shui Dong, Yan-Dong Cai, Chang-Zhi Wu, Yi Guo, Ying Gu, Jiang Zeng, Hao Zou, Quan-Ming Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection |
title | Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection |
title_full | Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection |
title_fullStr | Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection |
title_full_unstemmed | Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection |
title_short | Evaluation of the Protective Immunity of a Novel Subunit Fusion Vaccine in a Murine Model of Systemic MRSA Infection |
title_sort | evaluation of the protective immunity of a novel subunit fusion vaccine in a murine model of systemic mrsa infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852261/ https://www.ncbi.nlm.nih.gov/pubmed/24324681 http://dx.doi.org/10.1371/journal.pone.0081212 |
work_keys_str_mv | AT zuoqianfei evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT yangliuyang evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT fengqiang evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT ludongshui evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT dongyandong evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT caichangzhi evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT wuyi evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT guoying evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT gujiang evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT zenghao evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection AT zouquanming evaluationoftheprotectiveimmunityofanovelsubunitfusionvaccineinamurinemodelofsystemicmrsainfection |