Cargando…
Effects of neck pain on reaching overhead and reading: a case–control study of long and short neck flexion
BACKGROUND: Reaching overhead and reading are tasks that many individuals encounter daily. The level of difficulty of these tasks increases if an individual has neck pain. This study determined the neck movement patterns during these two tasks by comparing neck flexion of individuals with and withou...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852362/ https://www.ncbi.nlm.nih.gov/pubmed/24119534 http://dx.doi.org/10.1186/2052-1847-5-21 |
Sumario: | BACKGROUND: Reaching overhead and reading are tasks that many individuals encounter daily. The level of difficulty of these tasks increases if an individual has neck pain. This study determined the neck movement patterns during these two tasks by comparing neck flexion of individuals with and without neck pain. METHODS: This case control study used the portable video technology, Dartfish ProSuite 5.5 Video Software, to analyse neck flexion movement patterns. Healthy individuals and individuals with neck pain were videotaped while they completed two tasks: reaching overhead from a standing position and reading from a sitting position. A single position of interest was selected for analysis from both tasks. The degree of neck flexion presented by the participant in this position at the beginning and end of the task was recorded. The angle change between these two time points was calculated for each participant. Differences between groups were determined by comparing the average flexion angle changes in groups by t-tests. RESULTS: The average angle change experienced by controls and neck pain participants during the overhead reaching tasks were very similar and a significant difference was not observed. The average angle changes experienced by the two groups during the reading task were more variable, but not significantly different. A t-test comparing average neck flexion angle change during dominant arm elevation for controls (m = −5.28˚, sd = 31.14) and neck pain participants (m = 5.07˚, sd = 32.41) revealed a mean between group difference of −10.34˚ (t(17) = −0.688, p = 0.5003). The average neck flexion angle change during long neck flexion was not statistically different between controls (m = 10.08˚, sd = 18.89) and neck pain participants (m = 4˚, sd = 18.18); although the mean between group difference was 6.08˚ (t(17) = 0.6856, p = 0.5022). CONCLUSIONS: Task performance is highly variable between individuals making it difficult to assess the impact of neck pain on small samples even with detailed motion analysis. Despite this, there was a difference in neck posture during reaching activities between controls and patients with neck pain. Neck pain can therefore influence the movement patterns used during daily activities. This has implications for primary and secondary prevention. |
---|