Cargando…
Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP)
BACKGROUND: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. METHODS: We clinically and electrophysiologically exa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852552/ https://www.ncbi.nlm.nih.gov/pubmed/24107482 http://dx.doi.org/10.1186/1750-1172-8-158 |
_version_ | 1782478685654220800 |
---|---|
author | Karle, Kathrin N Schüle, Rebecca Klebe, Stephan Otto, Susanne Frischholz, Christian Liepelt-Scarfone, Inga Schöls, Ludger |
author_facet | Karle, Kathrin N Schüle, Rebecca Klebe, Stephan Otto, Susanne Frischholz, Christian Liepelt-Scarfone, Inga Schöls, Ludger |
author_sort | Karle, Kathrin N |
collection | PubMed |
description | BACKGROUND: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. METHODS: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. RESULTS: Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. CONCLUSIONS: Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials. |
format | Online Article Text |
id | pubmed-3852552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38525522013-12-06 Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) Karle, Kathrin N Schüle, Rebecca Klebe, Stephan Otto, Susanne Frischholz, Christian Liepelt-Scarfone, Inga Schöls, Ludger Orphanet J Rare Dis Research BACKGROUND: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. METHODS: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. RESULTS: Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. CONCLUSIONS: Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials. BioMed Central 2013-10-09 /pmc/articles/PMC3852552/ /pubmed/24107482 http://dx.doi.org/10.1186/1750-1172-8-158 Text en Copyright © 2013 Karle et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Karle, Kathrin N Schüle, Rebecca Klebe, Stephan Otto, Susanne Frischholz, Christian Liepelt-Scarfone, Inga Schöls, Ludger Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) |
title | Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) |
title_full | Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) |
title_fullStr | Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) |
title_full_unstemmed | Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) |
title_short | Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) |
title_sort | electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (hsp) |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852552/ https://www.ncbi.nlm.nih.gov/pubmed/24107482 http://dx.doi.org/10.1186/1750-1172-8-158 |
work_keys_str_mv | AT karlekathrinn electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp AT schulerebecca electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp AT klebestephan electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp AT ottosusanne electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp AT frischholzchristian electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp AT liepeltscarfoneinga electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp AT scholsludger electrophysiologicalcharacterisationofmotorandsensorytractsinpatientswithhereditaryspasticparaplegiahsp |