Cargando…

Protein energy landscapes determined by five-dimensional crystallography

Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012 ▶), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001 ▶), Chem. Rev. 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Marius, Srajer, Vukica, Henning, Robert, Ihee, Hyotcherl, Purwar, Namrta, Tenboer, Jason, Tripathi, Shailesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852658/
https://www.ncbi.nlm.nih.gov/pubmed/24311594
http://dx.doi.org/10.1107/S0907444913025997
Descripción
Sumario:Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012 ▶), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001 ▶), Chem. Rev. 101, 1569–1581; Schmidt et al. (2005 ▶), Methods Mol. Biol. 305, 115–154; Schmidt (2008 ▶), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallo­graphy, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010 ▶), Acta Cryst. A66, 198–206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallo­graphic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes.