Cargando…
Cancer characterization and feature set extraction by discriminative margin clustering
BACKGROUND: A central challenge in the molecular diagnosis and treatment of cancer is to define a set of molecular features that, taken together, distinguish a given cancer, or type of cancer, from all normal cells and tissues. RESULTS: Discriminative margin clustering is a new technique for analyzi...
Autores principales: | Munagala, Kamesh, Tibshirani, Robert, Brown, Patrick O |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC385290/ https://www.ncbi.nlm.nih.gov/pubmed/15070405 http://dx.doi.org/10.1186/1471-2105-5-21 |
Ejemplares similares
-
Error margin analysis for feature gene extraction
por: Chow, Chi Kin, et al.
Publicado: (2010) -
Characterization of the Effectiveness of Reporting Lists of Small Feature Sets Relative to the Accuracy of the Prior Biological Knowledge
por: Zhao, Chen, et al.
Publicado: (2010) -
Iterative feature removal yields highly discriminative pathways
por: O’Hara, Stephen, et al.
Publicado: (2013) -
A simple method for assessing sample sizes in microarray experiments
por: Tibshirani, Robert
Publicado: (2006) -
The calibrated model-based concordance improved assessment of discriminative ability in patient clusters of limited sample size
por: van Klaveren, David, et al.
Publicado: (2019)