Cargando…
Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging
BACKGROUND: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However, fully automated techniques to segment images are often susceptible to noise...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852992/ https://www.ncbi.nlm.nih.gov/pubmed/24090265 http://dx.doi.org/10.1186/1471-2105-14-294 |
_version_ | 1782478760216363008 |
---|---|
author | Navlakha, Saket Ahammad, Parvez Myers, Eugene W |
author_facet | Navlakha, Saket Ahammad, Parvez Myers, Eugene W |
author_sort | Navlakha, Saket |
collection | PubMed |
description | BACKGROUND: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However, fully automated techniques to segment images are often susceptible to noise and heterogeneity in EM images (e.g. different histological preparations, different organisms, different brain regions, etc.). Supervised techniques to address this problem are often helpful but require large sets of training data, which are often difficult to obtain in practice, especially across many conditions. RESULTS: We propose a new, principled unsupervised algorithm to segment EM images using a two-step approach: edge detection via salient watersheds following by robust region merging. We performed experiments to gather EM neuroimages of two organisms (mouse and fruit fly) using different histological preparations and generated manually curated ground-truth segmentations. We compared our algorithm against several state-of-the-art unsupervised segmentation algorithms and found superior performance using two standard measures of under-and over-segmentation error. CONCLUSIONS: Our algorithm is general and may be applicable to other large-scale segmentation problems for bioimages. |
format | Online Article Text |
id | pubmed-3852992 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38529922013-12-16 Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging Navlakha, Saket Ahammad, Parvez Myers, Eugene W BMC Bioinformatics Methodology Article BACKGROUND: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However, fully automated techniques to segment images are often susceptible to noise and heterogeneity in EM images (e.g. different histological preparations, different organisms, different brain regions, etc.). Supervised techniques to address this problem are often helpful but require large sets of training data, which are often difficult to obtain in practice, especially across many conditions. RESULTS: We propose a new, principled unsupervised algorithm to segment EM images using a two-step approach: edge detection via salient watersheds following by robust region merging. We performed experiments to gather EM neuroimages of two organisms (mouse and fruit fly) using different histological preparations and generated manually curated ground-truth segmentations. We compared our algorithm against several state-of-the-art unsupervised segmentation algorithms and found superior performance using two standard measures of under-and over-segmentation error. CONCLUSIONS: Our algorithm is general and may be applicable to other large-scale segmentation problems for bioimages. BioMed Central 2013-10-04 /pmc/articles/PMC3852992/ /pubmed/24090265 http://dx.doi.org/10.1186/1471-2105-14-294 Text en Copyright © 2013 Navlakha et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Navlakha, Saket Ahammad, Parvez Myers, Eugene W Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
title | Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
title_full | Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
title_fullStr | Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
title_full_unstemmed | Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
title_short | Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
title_sort | unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852992/ https://www.ncbi.nlm.nih.gov/pubmed/24090265 http://dx.doi.org/10.1186/1471-2105-14-294 |
work_keys_str_mv | AT navlakhasaket unsupervisedsegmentationofnoisyelectronmicroscopyimagesusingsalientwatershedsandregionmerging AT ahammadparvez unsupervisedsegmentationofnoisyelectronmicroscopyimagesusingsalientwatershedsandregionmerging AT myerseugenew unsupervisedsegmentationofnoisyelectronmicroscopyimagesusingsalientwatershedsandregionmerging |