Cargando…
Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging
BACKGROUND: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However, fully automated techniques to segment images are often susceptible to noise...
Autores principales: | Navlakha, Saket, Ahammad, Parvez, Myers, Eugene W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852992/ https://www.ncbi.nlm.nih.gov/pubmed/24090265 http://dx.doi.org/10.1186/1471-2105-14-294 |
Ejemplares similares
-
An unsupervised image segmentation algorithm for coronary angiography
por: Yin, Zong-Xian, et al.
Publicado: (2022) -
A high-throughput framework to detect synapses in electron microscopy images
por: Navlakha, Saket, et al.
Publicado: (2013) -
Salient region detection through salient and non-salient dictionaries
por: Fareed, Mian Muhammad Sadiq, et al.
Publicado: (2019) -
Multi-class segmentation of neuronal structures in electron microscopy images
por: Cetina, Kendrick, et al.
Publicado: (2018) -
Methods for merging data sets in electron cryo-microscopy
por: Wilkinson, Max E., et al.
Publicado: (2019)