Cargando…

Aromatase inhibitor treatment with an intravaginal device and its effect on pre-ovulatory ovarian follicles in a bovine model

BACKGROUND: Letrozole, a non-steroidal aromatase inhibitor, prevents the body from producing its own estrogen. The objectives of the present study were to test the hypotheses that letrozole treatment, initiated prior to selection of the preovulatory dominant follicle, will induce the growth of more...

Descripción completa

Detalles Bibliográficos
Autores principales: Yapura, Jimena, Mapletoft, Reuben J, Pierson, Roger A, Singh, Jaswant, Adams, Gregg P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853024/
https://www.ncbi.nlm.nih.gov/pubmed/24090109
http://dx.doi.org/10.1186/1477-7827-11-97
Descripción
Sumario:BACKGROUND: Letrozole, a non-steroidal aromatase inhibitor, prevents the body from producing its own estrogen. The objectives of the present study were to test the hypotheses that letrozole treatment, initiated prior to selection of the preovulatory dominant follicle, will induce the growth of more than one follicle to a pre-ovulatory size, and will delay ovulation. METHODS: Post-pubertal beef heifers were given two luteolytic doses of PGF (12 h apart) and monitored by ultrasonography for ovulation. Five to eight days later, ovarian follicular wave emergence was synchronized by ultrasound-guided transvaginal follicular ablation (Day 0=wave emergence) and a luteolytic dose of PGF was given 60 and 72 h later. On Day 1, heifers were divided randomly into two groups (n=15/group) and an intravaginal device containing 1 g of letrozole or a blank device (control) was inserted. The intravaginal devices were removed on Day 7, or at the time of ovulation, whichever occurred first. Transrectal ultrasonography and blood sample collection were performed daily from the day of ablation to 12 days after subsequent ovulation. RESULTS: The mean (+/-SEM) interval from device placement to ovulation was longer in letrozole-treated animals compared to controls (6.1+/-0.25 vs 5.1+/-0.26 days, respectively; P<0.01). Single dominant follicles were present in both groups. The day-to-day diameter profiles of the dominant follicles of the ovulatory wave were larger (P<0.05) and the maximum diameters greater in letrozole-treated heifers (14.6+/-0.51 vs 12.4+/-0.53 mm, respectively; P<0.01). The diameter profile of the corpus luteum (CL) that formed after treatment did not differ between groups; however, plasma progesterone concentrations were higher (P<0.01) in heifers treated with letrozole. Estradiol concentrations were reduced following letrozole treatment (P<0.05), although a preovulatory rise of estradiol occurred in both groups. CONCLUSIONS: Administration of letrozole with an intravaginal device during growth of the ovulatory follicle delayed ovulation by 24 h and resulted in the formation of a CL that secreted higher levels of progesterone. A sustained-release intravaginal device may be useful for the development of an aromatase inhibitor-based protocol to control ovulation for herd synchronization and to enhance fertility by increasing circulating progesterone concentrations during the first 7 days post-ovulation in cattle.