Cargando…
Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery
Common spatial pattern (CSP) is one of the most popular and effective feature extraction methods for motor imagery-based brain-computer interface (BCI), but the inherent drawback of CSP is that the estimation of the covariance matrices is sensitive to noise. In this work, local temporal correlation...
Autores principales: | Zhang, Rui, Xu, Peng, Liu, Tiejun, Zhang, Yangsong, Guo, Lanjin, Li, Peiyang, Yao, Dezhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853213/ https://www.ncbi.nlm.nih.gov/pubmed/24348740 http://dx.doi.org/10.1155/2013/591216 |
Ejemplares similares
-
L1 Norm based common spatial patterns decomposition for scalp EEG BCI
por: Li, Peiyang, et al.
Publicado: (2013) -
Z-Score Linear Discriminant Analysis for EEG Based Brain-Computer Interfaces
por: Zhang, Rui, et al.
Publicado: (2013) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space
por: Xygonakis, Ioannis, et al.
Publicado: (2018) -
Motor Imagery EEG Classification Using Capsule Networks†
por: Ha, Kwon-Woo, et al.
Publicado: (2019)