Cargando…
Prediction of Drugs Target Groups Based on ChEBI Ontology
Most drugs have beneficial as well as adverse effects and exert their biological functions by adjusting and altering the functions of their target proteins. Thus, knowledge of drugs target proteins is essential for the improvement of therapeutic effects and mitigation of undesirable side effects. In...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853244/ https://www.ncbi.nlm.nih.gov/pubmed/24350241 http://dx.doi.org/10.1155/2013/132724 |
Sumario: | Most drugs have beneficial as well as adverse effects and exert their biological functions by adjusting and altering the functions of their target proteins. Thus, knowledge of drugs target proteins is essential for the improvement of therapeutic effects and mitigation of undesirable side effects. In the study, we proposed a novel prediction method based on drug/compound ontology information extracted from ChEBI to identify drugs target groups from which the kind of functions of a drug may be deduced. By collecting data in KEGG, a benchmark dataset consisting of 876 drugs, categorized into four target groups, was constructed. To evaluate the method more thoroughly, the benchmark dataset was divided into a training dataset and an independent test dataset. It is observed by jackknife test that the overall prediction accuracy on the training dataset was 83.12%, while it was 87.50% on the test dataset—the predictor exhibited an excellent generalization. The good performance of the method indicates that the ontology information of the drugs contains rich information about their target groups, and the study may become an inspiration to solve the problems of this sort and bridge the gap between ChEBI ontology and drugs target groups. |
---|