Cargando…
Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels
BACKGROUND: Microglia possess an elevated grade of plasticity, undergoing several structural changes based on their location and state of activation. The first step towards the comprehension of microglia’s biology and functional responses to an extremely mutable extracellular milieu, consists in dis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853476/ https://www.ncbi.nlm.nih.gov/pubmed/24119251 http://dx.doi.org/10.1186/1471-2202-14-121 |
_version_ | 1782294641832361984 |
---|---|
author | Amadio, Susanna De Ninno, Adele Montilli, Cinzia Businaro, Luca Gerardino, Annamaria Volonté, Cinzia |
author_facet | Amadio, Susanna De Ninno, Adele Montilli, Cinzia Businaro, Luca Gerardino, Annamaria Volonté, Cinzia |
author_sort | Amadio, Susanna |
collection | PubMed |
description | BACKGROUND: Microglia possess an elevated grade of plasticity, undergoing several structural changes based on their location and state of activation. The first step towards the comprehension of microglia’s biology and functional responses to an extremely mutable extracellular milieu, consists in discriminating the morphological features acquired by cells maintained in vitro under diverse environmental conditions. Previous work described neither primary microglia grown on artificially patterned environments which impose physical cues and constraints, nor long distance migration of microglia in vitro. To this aim, the present work exploits artificial bio-mimetic microstructured substrates with pillar-shaped or line-grating geometries fabricated on poly(dimethylsiloxane) by soft lithography, in addition to microfluidic devices, and highlights some morphological/functional characteristics of microglia which were underestimated or unknown so far. RESULTS: We report that primary microglia selectively adapt to diverse microstructured substrates modifying accordingly their morphological features and behavior. On micropatterned pillar-shaped geometries, microglia appear multipolar, extend several protrusions in all directions and form distinct pseudopodia. On both micropatterned line-grating geometries and microfluidic channels, microglia extend the cytoplasm from a roundish to a stretched, flattened morphology and assume a filopodia-bearing bipolar structure. Finally, we show that in the absence of any applied chemical gradient, primary microglia spontaneously moves through microfluidic channels for a distance of up to 500 μm in approximately 12 hours, with an average speed of 0.66 μm/min. CONCLUSIONS: We demonstrate an elevated grade of microglia plasticity in response to a mutable extracellular environment, thus making these cells an appealing population to be further exploited for lab on chip technologies. The development of microglia-based microstructured substrates opens the road to novel hybrid platforms for testing drugs for neuroinflammatory diseases. |
format | Online Article Text |
id | pubmed-3853476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38534762013-12-07 Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels Amadio, Susanna De Ninno, Adele Montilli, Cinzia Businaro, Luca Gerardino, Annamaria Volonté, Cinzia BMC Neurosci Research Article BACKGROUND: Microglia possess an elevated grade of plasticity, undergoing several structural changes based on their location and state of activation. The first step towards the comprehension of microglia’s biology and functional responses to an extremely mutable extracellular milieu, consists in discriminating the morphological features acquired by cells maintained in vitro under diverse environmental conditions. Previous work described neither primary microglia grown on artificially patterned environments which impose physical cues and constraints, nor long distance migration of microglia in vitro. To this aim, the present work exploits artificial bio-mimetic microstructured substrates with pillar-shaped or line-grating geometries fabricated on poly(dimethylsiloxane) by soft lithography, in addition to microfluidic devices, and highlights some morphological/functional characteristics of microglia which were underestimated or unknown so far. RESULTS: We report that primary microglia selectively adapt to diverse microstructured substrates modifying accordingly their morphological features and behavior. On micropatterned pillar-shaped geometries, microglia appear multipolar, extend several protrusions in all directions and form distinct pseudopodia. On both micropatterned line-grating geometries and microfluidic channels, microglia extend the cytoplasm from a roundish to a stretched, flattened morphology and assume a filopodia-bearing bipolar structure. Finally, we show that in the absence of any applied chemical gradient, primary microglia spontaneously moves through microfluidic channels for a distance of up to 500 μm in approximately 12 hours, with an average speed of 0.66 μm/min. CONCLUSIONS: We demonstrate an elevated grade of microglia plasticity in response to a mutable extracellular environment, thus making these cells an appealing population to be further exploited for lab on chip technologies. The development of microglia-based microstructured substrates opens the road to novel hybrid platforms for testing drugs for neuroinflammatory diseases. BioMed Central 2013-10-13 /pmc/articles/PMC3853476/ /pubmed/24119251 http://dx.doi.org/10.1186/1471-2202-14-121 Text en Copyright © 2013 Amadio et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Amadio, Susanna De Ninno, Adele Montilli, Cinzia Businaro, Luca Gerardino, Annamaria Volonté, Cinzia Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
title | Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
title_full | Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
title_fullStr | Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
title_full_unstemmed | Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
title_short | Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
title_sort | plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853476/ https://www.ncbi.nlm.nih.gov/pubmed/24119251 http://dx.doi.org/10.1186/1471-2202-14-121 |
work_keys_str_mv | AT amadiosusanna plasticityofprimarymicrogliaonmicropatternedgeometriesandspontaneouslongdistancemigrationinmicrofluidicchannels AT deninnoadele plasticityofprimarymicrogliaonmicropatternedgeometriesandspontaneouslongdistancemigrationinmicrofluidicchannels AT montillicinzia plasticityofprimarymicrogliaonmicropatternedgeometriesandspontaneouslongdistancemigrationinmicrofluidicchannels AT businaroluca plasticityofprimarymicrogliaonmicropatternedgeometriesandspontaneouslongdistancemigrationinmicrofluidicchannels AT gerardinoannamaria plasticityofprimarymicrogliaonmicropatternedgeometriesandspontaneouslongdistancemigrationinmicrofluidicchannels AT volontecinzia plasticityofprimarymicrogliaonmicropatternedgeometriesandspontaneouslongdistancemigrationinmicrofluidicchannels |