Cargando…

Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed

BACKGROUND: Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerou...

Descripción completa

Detalles Bibliográficos
Autores principales: Boykin, Laura M, Bell, Charles D, Evans, Gregory, Small, Ian, De Barro, Paul J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853546/
https://www.ncbi.nlm.nih.gov/pubmed/24138220
http://dx.doi.org/10.1186/1471-2148-13-228
_version_ 1782294644084703232
author Boykin, Laura M
Bell, Charles D
Evans, Gregory
Small, Ian
De Barro, Paul J
author_facet Boykin, Laura M
Bell, Charles D
Evans, Gregory
Small, Ian
De Barro, Paul J
author_sort Boykin, Laura M
collection PubMed
description BACKGROUND: Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world’s most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes. RESULTS: The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification. CONCLUSIONS: Our analysis suggests that the major lineages within the complex arose approximately 60–30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period of global diversification that occurred broadly across the plant and animal kingdoms and was most likely associated with major climatic and tectonic events.
format Online
Article
Text
id pubmed-3853546
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-38535462013-12-07 Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed Boykin, Laura M Bell, Charles D Evans, Gregory Small, Ian De Barro, Paul J BMC Evol Biol Research Article BACKGROUND: Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world’s most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes. RESULTS: The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification. CONCLUSIONS: Our analysis suggests that the major lineages within the complex arose approximately 60–30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period of global diversification that occurred broadly across the plant and animal kingdoms and was most likely associated with major climatic and tectonic events. BioMed Central 2013-10-18 /pmc/articles/PMC3853546/ /pubmed/24138220 http://dx.doi.org/10.1186/1471-2148-13-228 Text en Copyright © 2013 Boykin et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Boykin, Laura M
Bell, Charles D
Evans, Gregory
Small, Ian
De Barro, Paul J
Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
title Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
title_full Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
title_fullStr Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
title_full_unstemmed Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
title_short Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed
title_sort is agriculture driving the diversification of the bemisia tabaci species complex (hemiptera: sternorrhyncha: aleyrodidae)?: dating, diversification and biogeographic evidence revealed
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853546/
https://www.ncbi.nlm.nih.gov/pubmed/24138220
http://dx.doi.org/10.1186/1471-2148-13-228
work_keys_str_mv AT boykinlauram isagriculturedrivingthediversificationofthebemisiatabacispeciescomplexhemipterasternorrhynchaaleyrodidaedatingdiversificationandbiogeographicevidencerevealed
AT bellcharlesd isagriculturedrivingthediversificationofthebemisiatabacispeciescomplexhemipterasternorrhynchaaleyrodidaedatingdiversificationandbiogeographicevidencerevealed
AT evansgregory isagriculturedrivingthediversificationofthebemisiatabacispeciescomplexhemipterasternorrhynchaaleyrodidaedatingdiversificationandbiogeographicevidencerevealed
AT smallian isagriculturedrivingthediversificationofthebemisiatabacispeciescomplexhemipterasternorrhynchaaleyrodidaedatingdiversificationandbiogeographicevidencerevealed
AT debarropaulj isagriculturedrivingthediversificationofthebemisiatabacispeciescomplexhemipterasternorrhynchaaleyrodidaedatingdiversificationandbiogeographicevidencerevealed