Cargando…
Strong species-environment feedback shapes plant community assembly along environmental gradients
An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853557/ https://www.ncbi.nlm.nih.gov/pubmed/24324863 http://dx.doi.org/10.1002/ece3.784 |
_version_ | 1782294646596042752 |
---|---|
author | Jiang, Jiang DeAngelis, Donald L |
author_facet | Jiang, Jiang DeAngelis, Donald L |
author_sort | Jiang, Jiang |
collection | PubMed |
description | An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly. |
format | Online Article Text |
id | pubmed-3853557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38535572013-12-09 Strong species-environment feedback shapes plant community assembly along environmental gradients Jiang, Jiang DeAngelis, Donald L Ecol Evol Original Research An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly. Blackwell Publishing Ltd 2013-10 2013-09-20 /pmc/articles/PMC3853557/ /pubmed/24324863 http://dx.doi.org/10.1002/ece3.784 Text en © 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Jiang, Jiang DeAngelis, Donald L Strong species-environment feedback shapes plant community assembly along environmental gradients |
title | Strong species-environment feedback shapes plant community assembly along environmental gradients |
title_full | Strong species-environment feedback shapes plant community assembly along environmental gradients |
title_fullStr | Strong species-environment feedback shapes plant community assembly along environmental gradients |
title_full_unstemmed | Strong species-environment feedback shapes plant community assembly along environmental gradients |
title_short | Strong species-environment feedback shapes plant community assembly along environmental gradients |
title_sort | strong species-environment feedback shapes plant community assembly along environmental gradients |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853557/ https://www.ncbi.nlm.nih.gov/pubmed/24324863 http://dx.doi.org/10.1002/ece3.784 |
work_keys_str_mv | AT jiangjiang strongspeciesenvironmentfeedbackshapesplantcommunityassemblyalongenvironmentalgradients AT deangelisdonaldl strongspeciesenvironmentfeedbackshapesplantcommunityassemblyalongenvironmentalgradients |