Cargando…

Zinc cross-linked hydroxamated alginates for pulsed drug release

INTRODUCTION: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. MATERIALS AND METHODS: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sod...

Descripción completa

Detalles Bibliográficos
Autores principales: Raut, Neha S, Deshmukh, Prasad R, Umekar, Milind J, Kotagale, Nandkishor R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853759/
https://www.ncbi.nlm.nih.gov/pubmed/24350039
http://dx.doi.org/10.4103/2230-973X.121292
Descripción
Sumario:INTRODUCTION: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. MATERIALS AND METHODS: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). RESULTS: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. CONCLUSION: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed.