Cargando…
Efficient mining gapped sequential patterns for motifs in biological sequences
BACKGROUND: Pattern mining for biological sequences is an important problem in bioinformatics and computational biology. Biological data mining yield impact in diverse biological fields, such as discovery of co-occurring biosequences, which is important for biological data analyses. The approaches o...
Autores principales: | Liao, Vance Chiang-Chi, Chen, Ming-Syan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854651/ https://www.ncbi.nlm.nih.gov/pubmed/24565366 http://dx.doi.org/10.1186/1752-0509-7-S4-S7 |
Ejemplares similares
-
Efficient Mining of Interesting Patterns in Large Biological Sequences
por: Rashid, Md. Mamunur, et al.
Publicado: (2012) -
Application of Gap-Constraints Given Sequential Frequent Pattern Mining for Protein Function Prediction
por: Park, Hyeon Ah, et al.
Publicado: (2015) -
WildSpan: mining structured motifs from protein sequences
por: Hsu, Chen-Ming, et al.
Publicado: (2011) -
Efficient sequential and parallel algorithms for planted motif search
por: Nicolae, Marius, et al.
Publicado: (2014) -
Identification of hot regions in protein-protein interactions by sequential pattern mining
por: Hsu, Chen-Ming, et al.
Publicado: (2007)