Cargando…
Sparse representation approaches for the classification of high-dimensional biological data
BACKGROUND: High-throughput genomic and proteomic data have important applications in medicine including prevention, diagnosis, treatment, and prognosis of diseases, and molecular biology, for example pathway identification. Many of such applications can be formulated to classification and dimension...
Autores principales: | Li, Yifeng, Ngom, Alioune |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854665/ https://www.ncbi.nlm.nih.gov/pubmed/24565287 http://dx.doi.org/10.1186/1752-0509-7-S4-S6 |
Ejemplares similares
-
The non-negative matrix factorization toolbox for biological data mining
por: Li, Yifeng, et al.
Publicado: (2013) -
Sparse representations of high dimensional neural data
por: Mody, Sandeep K., et al.
Publicado: (2022) -
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Sparse Representation for Classification of Tumors Using Gene Expression Data
por: Hang, Xiyi, et al.
Publicado: (2009) -
Correction: Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015)