Cargando…
Stereoscopic Depth Perception Using a Model Based on the Primary Visual Cortex
This work describes an approach inspired by the primary visual cortex using the stimulus response of the receptive field profiles of binocular cells for disparity computation. Using the energy model based on the mechanism of log-Gabor filters for disparity encodings, we propose a suitable model to c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855160/ https://www.ncbi.nlm.nih.gov/pubmed/24339881 http://dx.doi.org/10.1371/journal.pone.0080745 |
Sumario: | This work describes an approach inspired by the primary visual cortex using the stimulus response of the receptive field profiles of binocular cells for disparity computation. Using the energy model based on the mechanism of log-Gabor filters for disparity encodings, we propose a suitable model to consistently represent the complex cells by computing the wide bandwidths of the cortical cells. This way, the model ensures the general neurophysiological findings in the visual cortex (V1), emphasizing the physical disparities and providing a simple selection method for the complex cell response. The results suggest that our proposed approach can achieve better results than a hybrid model with phase-shift and position-shift using position disparity alone. |
---|