Cargando…

AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes

Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restor...

Descripción completa

Detalles Bibliográficos
Autores principales: Jenkins, Yonchu, Sun, Tian-Qiang, Markovtsov, Vadim, Foretz, Marc, Li, Wei, Nguyen, Henry, Li, Yingwu, Pan, Alison, Uy, Gerald, Gross, Lisa, Baltgalvis, Kristen, Yung, Stephanie L., Gururaja, Tarikere, Kinoshita, Taisei, Owyang, Alexander, Smith, Ira J., McCaughey, Kelly, White, Kathy, Godinez, Guillermo, Alcantara, Raniel, Choy, Carmen, Ren, Hong, Basile, Rachel, Sweeny, David J., Xu, Xiang, Issakani, Sarkiz D., Carroll, David C., Goff, Dane A., Shaw, Simon J., Singh, Rajinder, Boros, Laszlo G., Laplante, Marc-André, Marcotte, Bruno, Kohen, Rita, Viollet, Benoit, Marette, André, Payan, Donald G., Kinsella, Todd M., Hitoshi, Yasumichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855387/
https://www.ncbi.nlm.nih.gov/pubmed/24339975
http://dx.doi.org/10.1371/journal.pone.0081870
_version_ 1782294917161156608
author Jenkins, Yonchu
Sun, Tian-Qiang
Markovtsov, Vadim
Foretz, Marc
Li, Wei
Nguyen, Henry
Li, Yingwu
Pan, Alison
Uy, Gerald
Gross, Lisa
Baltgalvis, Kristen
Yung, Stephanie L.
Gururaja, Tarikere
Kinoshita, Taisei
Owyang, Alexander
Smith, Ira J.
McCaughey, Kelly
White, Kathy
Godinez, Guillermo
Alcantara, Raniel
Choy, Carmen
Ren, Hong
Basile, Rachel
Sweeny, David J.
Xu, Xiang
Issakani, Sarkiz D.
Carroll, David C.
Goff, Dane A.
Shaw, Simon J.
Singh, Rajinder
Boros, Laszlo G.
Laplante, Marc-André
Marcotte, Bruno
Kohen, Rita
Viollet, Benoit
Marette, André
Payan, Donald G.
Kinsella, Todd M.
Hitoshi, Yasumichi
author_facet Jenkins, Yonchu
Sun, Tian-Qiang
Markovtsov, Vadim
Foretz, Marc
Li, Wei
Nguyen, Henry
Li, Yingwu
Pan, Alison
Uy, Gerald
Gross, Lisa
Baltgalvis, Kristen
Yung, Stephanie L.
Gururaja, Tarikere
Kinoshita, Taisei
Owyang, Alexander
Smith, Ira J.
McCaughey, Kelly
White, Kathy
Godinez, Guillermo
Alcantara, Raniel
Choy, Carmen
Ren, Hong
Basile, Rachel
Sweeny, David J.
Xu, Xiang
Issakani, Sarkiz D.
Carroll, David C.
Goff, Dane A.
Shaw, Simon J.
Singh, Rajinder
Boros, Laszlo G.
Laplante, Marc-André
Marcotte, Bruno
Kohen, Rita
Viollet, Benoit
Marette, André
Payan, Donald G.
Kinsella, Todd M.
Hitoshi, Yasumichi
author_sort Jenkins, Yonchu
collection PubMed
description Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC(50) 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13)C-palmitate and (13)C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO(2) in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.
format Online
Article
Text
id pubmed-3855387
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38553872013-12-11 AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes Jenkins, Yonchu Sun, Tian-Qiang Markovtsov, Vadim Foretz, Marc Li, Wei Nguyen, Henry Li, Yingwu Pan, Alison Uy, Gerald Gross, Lisa Baltgalvis, Kristen Yung, Stephanie L. Gururaja, Tarikere Kinoshita, Taisei Owyang, Alexander Smith, Ira J. McCaughey, Kelly White, Kathy Godinez, Guillermo Alcantara, Raniel Choy, Carmen Ren, Hong Basile, Rachel Sweeny, David J. Xu, Xiang Issakani, Sarkiz D. Carroll, David C. Goff, Dane A. Shaw, Simon J. Singh, Rajinder Boros, Laszlo G. Laplante, Marc-André Marcotte, Bruno Kohen, Rita Viollet, Benoit Marette, André Payan, Donald G. Kinsella, Todd M. Hitoshi, Yasumichi PLoS One Research Article Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC(50) 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13)C-palmitate and (13)C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO(2) in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models. Public Library of Science 2013-12-05 /pmc/articles/PMC3855387/ /pubmed/24339975 http://dx.doi.org/10.1371/journal.pone.0081870 Text en © 2013 Jenkins et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Jenkins, Yonchu
Sun, Tian-Qiang
Markovtsov, Vadim
Foretz, Marc
Li, Wei
Nguyen, Henry
Li, Yingwu
Pan, Alison
Uy, Gerald
Gross, Lisa
Baltgalvis, Kristen
Yung, Stephanie L.
Gururaja, Tarikere
Kinoshita, Taisei
Owyang, Alexander
Smith, Ira J.
McCaughey, Kelly
White, Kathy
Godinez, Guillermo
Alcantara, Raniel
Choy, Carmen
Ren, Hong
Basile, Rachel
Sweeny, David J.
Xu, Xiang
Issakani, Sarkiz D.
Carroll, David C.
Goff, Dane A.
Shaw, Simon J.
Singh, Rajinder
Boros, Laszlo G.
Laplante, Marc-André
Marcotte, Bruno
Kohen, Rita
Viollet, Benoit
Marette, André
Payan, Donald G.
Kinsella, Todd M.
Hitoshi, Yasumichi
AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes
title AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes
title_full AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes
title_fullStr AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes
title_full_unstemmed AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes
title_short AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes
title_sort ampk activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855387/
https://www.ncbi.nlm.nih.gov/pubmed/24339975
http://dx.doi.org/10.1371/journal.pone.0081870
work_keys_str_mv AT jenkinsyonchu ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT suntianqiang ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT markovtsovvadim ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT foretzmarc ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT liwei ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT nguyenhenry ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT liyingwu ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT panalison ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT uygerald ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT grosslisa ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT baltgalviskristen ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT yungstephaniel ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT gururajatarikere ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT kinoshitataisei ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT owyangalexander ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT smithiraj ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT mccaugheykelly ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT whitekathy ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT godinezguillermo ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT alcantararaniel ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT choycarmen ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT renhong ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT basilerachel ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT sweenydavidj ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT xuxiang ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT issakanisarkizd ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT carrolldavidc ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT goffdanea ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT shawsimonj ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT singhrajinder ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT boroslaszlog ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT laplantemarcandre ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT marcottebruno ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT kohenrita ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT violletbenoit ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT maretteandre ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT payandonaldg ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT kinsellatoddm ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes
AT hitoshiyasumichi ampkactivationthroughmitochondrialregulationresultsinincreasedsubstrateoxidationandimprovedmetabolicparametersinmodelsofdiabetes