Cargando…

Emerging Paradigms in Genomics-Based Crop Improvement

Next generation sequencing platforms and high-throughput genotyping assays have remarkably expedited the pace of development of genomic tools and resources for several crops. Complementing the technological developments, conceptual shifts have also been witnessed in designing experimental population...

Descripción completa

Detalles Bibliográficos
Autor principal: Bohra, Abhishek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855978/
https://www.ncbi.nlm.nih.gov/pubmed/24348171
http://dx.doi.org/10.1155/2013/585467
Descripción
Sumario:Next generation sequencing platforms and high-throughput genotyping assays have remarkably expedited the pace of development of genomic tools and resources for several crops. Complementing the technological developments, conceptual shifts have also been witnessed in designing experimental populations. Availability of second generation mapping populations encompassing multiple alleles, multiple traits, and extensive recombination events is radically changing the phenomenon of classical QTL mapping. Additionally, the rising molecular breeding approaches like marker assisted recurrent selection (MARS) that are able to harness several QTLs are of particular importance in obtaining a “designed” genotype carrying the most desirable combinations of favourable alleles. Furthermore, rapid generation of genome-wide marker data coupled with easy access to precise and accurate phenotypic screens enable large-scale exploitation of LD not only to discover novel QTLs via whole genome association scans but also to practise genomic estimated breeding value (GEBV)-based selection of genotypes. Given refinements being experienced in analytical methods and software tools, the multiparent populations will be the resource of choice to undertake genome wide association studies (GWAS), multiparent MARS, and genomic selection (GS). With this, it is envisioned that these high-throughput and high-power molecular breeding methods would greatly assist in exploiting the enormous potential underlying breeding by design approach to facilitate accelerated crop improvement.