Cargando…

Development and Validation of a Stability-Indicating High Performance Liquid Chromatographic (HPLC) Method for the Determination of Related Substances of Micafungin Sodium in Drug Substances

An isocratic, sensitive and stability-indicating high performance liquid chromatographic (HPLC) method for separation and determination of the related substances of micafungin sodium was developed. The chromatographic separation was achieved on Agilent Zorbax SB-C18 column (250 × 4.6 mm, 5 μm). Forc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Shengsheng, Meng, Xiang, Su, Xin, Luo, Yongwei, Sun, Zuyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855999/
https://www.ncbi.nlm.nih.gov/pubmed/24284389
http://dx.doi.org/10.3390/ijms141121202
Descripción
Sumario:An isocratic, sensitive and stability-indicating high performance liquid chromatographic (HPLC) method for separation and determination of the related substances of micafungin sodium was developed. The chromatographic separation was achieved on Agilent Zorbax SB-C18 column (250 × 4.6 mm, 5 μm). Forced degradation study confirmed that the newly developed method was specific and selective to the degradation products. The performance of the method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision and robustness. Regression analysis showed correlation coefficient value greater than 0.999 for micafungin sodium and its six impurities. Limit of detection of impurities was in the range of 0.006%–0.013% indicating the high sensitivity of the newly developed method. Accuracy of the method was established based on the recovery obtained between 98.2% and 102.0% for all impurities. RSD obtained for the repeatability and intermediate precision experiments, was less than 1.0%. The method was successfully applied to quantify related substances of micafungin sodium in bulk drugs.