Cargando…
AlPOs Synthetic Factor Analysis Based on Maximum Weight and Minimum Redundancy Feature Selection
The relationship between synthetic factors and the resulting structures is critical for rational synthesis of zeolites and related microporous materials. In this paper, we develop a new feature selection method for synthetic factor analysis of (6,12)-ring-containing microporous aluminophosphates (Al...
Autores principales: | Guo, Yuting, Wang, Jianzhong, Gao, Na, Qi, Miao, Zhang, Ming, Kong, Jun, Lv, Yinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856056/ https://www.ncbi.nlm.nih.gov/pubmed/24217226 http://dx.doi.org/10.3390/ijms141122132 |
Ejemplares similares
-
Kernel Partial Least Squares Feature Selection Based on Maximum Weight Minimum Redundancy
por: Liu, Xiling, et al.
Publicado: (2023) -
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
por: Radovic, Milos, et al.
Publicado: (2017) -
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection
por: Wang, Jing, et al.
Publicado: (2013) -
Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process
por: Saffari, Mohsen, et al.
Publicado: (2021) -
Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection
por: Ma, Xin, et al.
Publicado: (2015)