Cargando…
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification
This study aimed to determinate phenolic contents and antioxidant activities of the halophyte Arthrocnemum indicum shoot extracts. Moreover, the anticancer effect of this plant on human colon cancer cells and the likely underlying mechanisms were also investigated, and the major phenols were identif...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856152/ https://www.ncbi.nlm.nih.gov/pubmed/24348703 http://dx.doi.org/10.1155/2013/529375 |
_version_ | 1782295031279779840 |
---|---|
author | Boulaaba, Mondher Mkadmini, Khaoula Tsolmon, Soninkhishig Han, Junkyu Smaoui, Abderrazak Kawada, Kiyokazu Ksouri, Riadh Isoda, Hiroko Abdelly, Chedly |
author_facet | Boulaaba, Mondher Mkadmini, Khaoula Tsolmon, Soninkhishig Han, Junkyu Smaoui, Abderrazak Kawada, Kiyokazu Ksouri, Riadh Isoda, Hiroko Abdelly, Chedly |
author_sort | Boulaaba, Mondher |
collection | PubMed |
description | This study aimed to determinate phenolic contents and antioxidant activities of the halophyte Arthrocnemum indicum shoot extracts. Moreover, the anticancer effect of this plant on human colon cancer cells and the likely underlying mechanisms were also investigated, and the major phenols were identified by LC-ESI-TOF-MS. Results showed that shoot extracts had an antiproliferative effect of about 55% as compared to the control and were characterised by substantial total polyphenol content (19 mg GAE/g DW) and high antioxidant activity (IC(50) = 40 μg/mL for DPPH test). DAPI staining revealed that these extracts decrease DNA synthesis and reduce the proliferation of Caco-2 cells which were stopped at the G(2)/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) correlate with the changes in cell cycle distribution. Eight phenolic compounds were also identified. In conclusion, A. indicum showed interesting antioxidant capacities associated with a significant antiproliferative effect explained by a cell cycle blocking at the G(2)/M phase. Taken together, these data suggest that A. indicum could be a promising candidate species as a source of anticancer molecules. |
format | Online Article Text |
id | pubmed-3856152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-38561522013-12-16 In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification Boulaaba, Mondher Mkadmini, Khaoula Tsolmon, Soninkhishig Han, Junkyu Smaoui, Abderrazak Kawada, Kiyokazu Ksouri, Riadh Isoda, Hiroko Abdelly, Chedly Evid Based Complement Alternat Med Research Article This study aimed to determinate phenolic contents and antioxidant activities of the halophyte Arthrocnemum indicum shoot extracts. Moreover, the anticancer effect of this plant on human colon cancer cells and the likely underlying mechanisms were also investigated, and the major phenols were identified by LC-ESI-TOF-MS. Results showed that shoot extracts had an antiproliferative effect of about 55% as compared to the control and were characterised by substantial total polyphenol content (19 mg GAE/g DW) and high antioxidant activity (IC(50) = 40 μg/mL for DPPH test). DAPI staining revealed that these extracts decrease DNA synthesis and reduce the proliferation of Caco-2 cells which were stopped at the G(2)/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) correlate with the changes in cell cycle distribution. Eight phenolic compounds were also identified. In conclusion, A. indicum showed interesting antioxidant capacities associated with a significant antiproliferative effect explained by a cell cycle blocking at the G(2)/M phase. Taken together, these data suggest that A. indicum could be a promising candidate species as a source of anticancer molecules. Hindawi Publishing Corporation 2013 2013-09-30 /pmc/articles/PMC3856152/ /pubmed/24348703 http://dx.doi.org/10.1155/2013/529375 Text en Copyright © 2013 Mondher Boulaaba et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Boulaaba, Mondher Mkadmini, Khaoula Tsolmon, Soninkhishig Han, Junkyu Smaoui, Abderrazak Kawada, Kiyokazu Ksouri, Riadh Isoda, Hiroko Abdelly, Chedly In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification |
title |
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification |
title_full |
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification |
title_fullStr |
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification |
title_full_unstemmed |
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification |
title_short |
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification |
title_sort | in vitro antiproliferative effect of arthrocnemum indicum extracts on caco-2 cancer cells through cell cycle control and related phenol lc-tof-ms identification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856152/ https://www.ncbi.nlm.nih.gov/pubmed/24348703 http://dx.doi.org/10.1155/2013/529375 |
work_keys_str_mv | AT boulaabamondher invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT mkadminikhaoula invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT tsolmonsoninkhishig invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT hanjunkyu invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT smaouiabderrazak invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT kawadakiyokazu invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT ksouririadh invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT isodahiroko invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification AT abdellychedly invitroantiproliferativeeffectofarthrocnemumindicumextractsoncaco2cancercellsthroughcellcyclecontrolandrelatedphenollctofmsidentification |