Cargando…
The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg
The integron is a genetic element that incorporates mobile genes termed gene cassettes into a reserved genetic site via site-specific recombination. It is best known for its role in antibiotic resistance with one type of integron, the class 1 integron, a major player in the dissemination of antibiot...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856429/ https://www.ncbi.nlm.nih.gov/pubmed/24367362 http://dx.doi.org/10.3389/fmicb.2013.00385 |
_version_ | 1782295060068433920 |
---|---|
author | Rapa, Rita A. Labbate, Maurizio |
author_facet | Rapa, Rita A. Labbate, Maurizio |
author_sort | Rapa, Rita A. |
collection | PubMed |
description | The integron is a genetic element that incorporates mobile genes termed gene cassettes into a reserved genetic site via site-specific recombination. It is best known for its role in antibiotic resistance with one type of integron, the class 1 integron, a major player in the dissemination of antibiotic resistance genes across Gram negative pathogens and commensals. However, integrons are ancient structures with over 100 classes (including class 1) present in bacteria from the broader environment. While, the class 1 integron is only one example of an integron being mobilized into the clinical environment, it is by far the most successful. Unlike clinical class 1 integrons which are largely found on plasmids, other integron classes are found on the chromosomes of bacteria and carry diverse gene cassettes indicating a non-antibiotic resistance role(s). However, there is very limited knowledge on what these alternative roles are. This is particularly relevant to Vibrio species where gene cassettes make up approximately 1–3% of their entire genome. In this review, we discuss how emphasis on class 1 integron research has resulted in a limited understanding by the wider research community on the role of integrons in the broader environment. This has the capacity to be counterproductive in solving or improving the antibiotic resistance problem into the future. Furthermore, there is still a significant lack of knowledge on how gene cassettes in Vibrio species drive adaptation and evolution. From research in Vibrio rotiferianus DAT722, new insight into how gene cassettes affect cellular physiology offers new alternative roles for the gene cassette resource. At least a subset of gene cassettes are involved in host surface polysaccharide modification suggesting that gene cassettes may be important in processes such as bacteriophage resistance, adhesion/biofilm formation, protection from grazers and bacterial aggregation. |
format | Online Article Text |
id | pubmed-3856429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38564292013-12-23 The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg Rapa, Rita A. Labbate, Maurizio Front Microbiol Microbiology The integron is a genetic element that incorporates mobile genes termed gene cassettes into a reserved genetic site via site-specific recombination. It is best known for its role in antibiotic resistance with one type of integron, the class 1 integron, a major player in the dissemination of antibiotic resistance genes across Gram negative pathogens and commensals. However, integrons are ancient structures with over 100 classes (including class 1) present in bacteria from the broader environment. While, the class 1 integron is only one example of an integron being mobilized into the clinical environment, it is by far the most successful. Unlike clinical class 1 integrons which are largely found on plasmids, other integron classes are found on the chromosomes of bacteria and carry diverse gene cassettes indicating a non-antibiotic resistance role(s). However, there is very limited knowledge on what these alternative roles are. This is particularly relevant to Vibrio species where gene cassettes make up approximately 1–3% of their entire genome. In this review, we discuss how emphasis on class 1 integron research has resulted in a limited understanding by the wider research community on the role of integrons in the broader environment. This has the capacity to be counterproductive in solving or improving the antibiotic resistance problem into the future. Furthermore, there is still a significant lack of knowledge on how gene cassettes in Vibrio species drive adaptation and evolution. From research in Vibrio rotiferianus DAT722, new insight into how gene cassettes affect cellular physiology offers new alternative roles for the gene cassette resource. At least a subset of gene cassettes are involved in host surface polysaccharide modification suggesting that gene cassettes may be important in processes such as bacteriophage resistance, adhesion/biofilm formation, protection from grazers and bacterial aggregation. Frontiers Media S.A. 2013-12-09 /pmc/articles/PMC3856429/ /pubmed/24367362 http://dx.doi.org/10.3389/fmicb.2013.00385 Text en Copyright © 2013 Rapa and Labbate. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Rapa, Rita A. Labbate, Maurizio The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg |
title | The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg |
title_full | The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg |
title_fullStr | The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg |
title_full_unstemmed | The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg |
title_short | The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg |
title_sort | function of integron-associated gene cassettes in vibrio species: the tip of the iceberg |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856429/ https://www.ncbi.nlm.nih.gov/pubmed/24367362 http://dx.doi.org/10.3389/fmicb.2013.00385 |
work_keys_str_mv | AT raparitaa thefunctionofintegronassociatedgenecassettesinvibriospeciesthetipoftheiceberg AT labbatemaurizio thefunctionofintegronassociatedgenecassettesinvibriospeciesthetipoftheiceberg AT raparitaa functionofintegronassociatedgenecassettesinvibriospeciesthetipoftheiceberg AT labbatemaurizio functionofintegronassociatedgenecassettesinvibriospeciesthetipoftheiceberg |