Cargando…

Protein Ser/Thr phosphatase-6 is required for maintenance of E-cadherin at adherens junctions

BACKGROUND: Epithelial tissues depend on intercellular homodimerization of E-cadherin and loss of E-cadherin is central to the epithelial to mesenchymal transition seen in multiple human diseases. Signaling pathways regulate E-cadherin function and cellular distribution via phosphorylation of the cy...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohama, Takashi, Wang, Lifu, Griner, Erin M, Brautigan, David L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856536/
https://www.ncbi.nlm.nih.gov/pubmed/24063632
http://dx.doi.org/10.1186/1471-2121-14-42
Descripción
Sumario:BACKGROUND: Epithelial tissues depend on intercellular homodimerization of E-cadherin and loss of E-cadherin is central to the epithelial to mesenchymal transition seen in multiple human diseases. Signaling pathways regulate E-cadherin function and cellular distribution via phosphorylation of the cytoplasmic region by kinases such as casein kinases but the protein phosphatases involved have not been identified. RESULTS: This study shows protein Ser/Thr phosphatase-6 catalytic subunit (PP6c) is expressed in epithelial tissue and its mRNA and protein are robustly up-regulated in epithelial cell lines at high vs. low density. PP6c accumulates at adherens junctions, not tight junctions, co-immunoprecipitates with E-cadherin-catenin complexes without a canonical SAPS subunit, and associates directly with the E-cadherin cytoplasmic tail. Inducible shRNA knockdown of PP6c dispersed E-cadherin from the cell surface and this response was reversed by chemical inhibition of casein kinase-1 and prevented by alanine substitution of Ser846 in murine E-cadherin. CONCLUSIONS: PP6c associates with E-cadherin in adherens junctions and is required to oppose casein kinase-1 to maintain cell surface localization of E-cadherin. There is feedback signaling to enhance PP6c transcription and boost protein levels in high density epithelial cells.