Cargando…
Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary
Because transplant experiments show that performance usually decreases across species range boundaries, some range limits might develop from factors and processes that prevent adaptation to stressful environments. Here, we determined whether an ecological cost of plant defense involving stress assoc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856735/ https://www.ncbi.nlm.nih.gov/pubmed/24340176 http://dx.doi.org/10.1002/ece3.657 |
_version_ | 1782295097674563584 |
---|---|
author | Siemens, David H Haugen, Riston |
author_facet | Siemens, David H Haugen, Riston |
author_sort | Siemens, David H |
collection | PubMed |
description | Because transplant experiments show that performance usually decreases across species range boundaries, some range limits might develop from factors and processes that prevent adaptation to stressful environments. Here, we determined whether an ecological cost of plant defense involving stress associated with changes in the local plant community may contribute to range limit development in the upland mustard species Boechera stricta. In a common garden experiment of 499 B. stricta plants, performance decreased and a multivariate axis of community structure increased across the boundary, indicating increased stress associated with the community change. There was also significant genetic variation (evolutionary potential) among marker-inferred inbred lines of B. stricta for tolerance to the stress; however, lines with high basal levels of glucosinolate toxins had lower tolerance to the change in community structure. We suggest that defense allocation, which is also needed across the range, may impede adaptation to the stress associated with the community change and thus contribute to range limit development. |
format | Online Article Text |
id | pubmed-3856735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38567352013-12-11 Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary Siemens, David H Haugen, Riston Ecol Evol Original Research Because transplant experiments show that performance usually decreases across species range boundaries, some range limits might develop from factors and processes that prevent adaptation to stressful environments. Here, we determined whether an ecological cost of plant defense involving stress associated with changes in the local plant community may contribute to range limit development in the upland mustard species Boechera stricta. In a common garden experiment of 499 B. stricta plants, performance decreased and a multivariate axis of community structure increased across the boundary, indicating increased stress associated with the community change. There was also significant genetic variation (evolutionary potential) among marker-inferred inbred lines of B. stricta for tolerance to the stress; however, lines with high basal levels of glucosinolate toxins had lower tolerance to the change in community structure. We suggest that defense allocation, which is also needed across the range, may impede adaptation to the stress associated with the community change and thus contribute to range limit development. Blackwell Publishing Ltd 2013-11 2013-10-05 /pmc/articles/PMC3856735/ /pubmed/24340176 http://dx.doi.org/10.1002/ece3.657 Text en © 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Siemens, David H Haugen, Riston Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
title | Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
title_full | Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
title_fullStr | Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
title_full_unstemmed | Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
title_short | Plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
title_sort | plant chemical defense allocation constrains evolution of tolerance to community change across a range boundary |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856735/ https://www.ncbi.nlm.nih.gov/pubmed/24340176 http://dx.doi.org/10.1002/ece3.657 |
work_keys_str_mv | AT siemensdavidh plantchemicaldefenseallocationconstrainsevolutionoftolerancetocommunitychangeacrossarangeboundary AT haugenriston plantchemicaldefenseallocationconstrainsevolutionoftolerancetocommunitychangeacrossarangeboundary |