Cargando…
Accelerated discovery via a whole-cell model
Whole-cell modeling promises to facilitate scientific inquiry by prioritizing future experiments based on existing datasets. To test this promise, we compared simulated growth rates with new measurements for all viable single-gene disruption strains in Mycoplasma genitalium. The discrepancies betwee...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856890/ https://www.ncbi.nlm.nih.gov/pubmed/24185838 http://dx.doi.org/10.1038/nmeth.2724 |
Sumario: | Whole-cell modeling promises to facilitate scientific inquiry by prioritizing future experiments based on existing datasets. To test this promise, we compared simulated growth rates with new measurements for all viable single-gene disruption strains in Mycoplasma genitalium. The discrepancies between simulations and experiments led to novel model predictions about specific kinetic parameters that we subsequently validated. These findings represent the first application of whole-cell modeling to accelerate biological discovery. |
---|