Cargando…

Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine

The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT), which is a potent analgesic, was formulated in elastic liposomes using Tween 8...

Descripción completa

Detalles Bibliográficos
Autores principales: Nava, Guadalupe, Piñón, Elizabeth, Mendoza, Luis, Mendoza, Néstor, Quintanar, David, Ganem, Adriana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857066/
https://www.ncbi.nlm.nih.gov/pubmed/24309316
http://dx.doi.org/10.3390/pharmaceutics3040954
_version_ 1782295112309538816
author Nava, Guadalupe
Piñón, Elizabeth
Mendoza, Luis
Mendoza, Néstor
Quintanar, David
Ganem, Adriana
author_facet Nava, Guadalupe
Piñón, Elizabeth
Mendoza, Luis
Mendoza, Néstor
Quintanar, David
Ganem, Adriana
author_sort Nava, Guadalupe
collection PubMed
description The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT), which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of −12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4) at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i) a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii) a flux of 0.278 μg/cm(2)h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect) before reaching the receptor medium; (iii) a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping) and transepidermal water loss (TEWL) measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT.
format Online
Article
Text
id pubmed-3857066
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-38570662013-12-16 Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine Nava, Guadalupe Piñón, Elizabeth Mendoza, Luis Mendoza, Néstor Quintanar, David Ganem, Adriana Pharmaceutics Article The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT), which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of −12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4) at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i) a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii) a flux of 0.278 μg/cm(2)h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect) before reaching the receptor medium; (iii) a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping) and transepidermal water loss (TEWL) measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT. MDPI 2011-12-15 /pmc/articles/PMC3857066/ /pubmed/24309316 http://dx.doi.org/10.3390/pharmaceutics3040954 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Nava, Guadalupe
Piñón, Elizabeth
Mendoza, Luis
Mendoza, Néstor
Quintanar, David
Ganem, Adriana
Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine
title Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine
title_full Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine
title_fullStr Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine
title_full_unstemmed Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine
title_short Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine
title_sort formulation and in vitro, ex vivo and in vivo evaluation of elastic liposomes for transdermal delivery of ketorolac tromethamine
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857066/
https://www.ncbi.nlm.nih.gov/pubmed/24309316
http://dx.doi.org/10.3390/pharmaceutics3040954
work_keys_str_mv AT navaguadalupe formulationandinvitroexvivoandinvivoevaluationofelasticliposomesfortransdermaldeliveryofketorolactromethamine
AT pinonelizabeth formulationandinvitroexvivoandinvivoevaluationofelasticliposomesfortransdermaldeliveryofketorolactromethamine
AT mendozaluis formulationandinvitroexvivoandinvivoevaluationofelasticliposomesfortransdermaldeliveryofketorolactromethamine
AT mendozanestor formulationandinvitroexvivoandinvivoevaluationofelasticliposomesfortransdermaldeliveryofketorolactromethamine
AT quintanardavid formulationandinvitroexvivoandinvivoevaluationofelasticliposomesfortransdermaldeliveryofketorolactromethamine
AT ganemadriana formulationandinvitroexvivoandinvivoevaluationofelasticliposomesfortransdermaldeliveryofketorolactromethamine