Cargando…
Analysis of superoxide dismutase 1, dual-specificity phosphatase 1, and transforming growth factor, beta 1 genes expression in keratoconic and non-keratoconic corneas
PURPOSE: To quantitatively assess the superoxide dismutase 1 (SOD1), transforming growth factor, beta 1 (TGF-β1), and dual-specificity phosphatase 1 (DUSP1) messenger ribonucleic acid (mRNA) expression levels as the main intracellular reactive oxygen species neutralizers, wound healing mediators, an...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Vision
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857158/ https://www.ncbi.nlm.nih.gov/pubmed/24339725 |
Sumario: | PURPOSE: To quantitatively assess the superoxide dismutase 1 (SOD1), transforming growth factor, beta 1 (TGF-β1), and dual-specificity phosphatase 1 (DUSP1) messenger ribonucleic acid (mRNA) expression levels as the main intracellular reactive oxygen species neutralizers, wound healing mediators, and immunomodulators (respectively) in keratoconic (KCN) and non-KCN corneas. METHODS: Total RNA was extracted from normal and keratoconic cultured corneal stromal fibroblasts. Semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to measure the relative expression levels of mRNAs of the SOD1, TGF-β1, and DUSP1 genes. RESULTS: The mRNA expression of TGF-β1 and DUSP1 was augmented in the KCN corneas (three- and fivefold, respectively; both p<0.05). The KCN and non-KCN samples showed no difference in comparative SOD1 mRNA levels. CONCLUSIONS: This study demonstrated a higher level of DUSP1 and TGF-β1 expression as known molecules in the inflammatory process. These results may provide new insight into the complex molecular pathways underlying KCN for investigating other inflammatory molecules. |
---|