Cargando…
Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology
Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857177/ https://www.ncbi.nlm.nih.gov/pubmed/24349032 http://dx.doi.org/10.1371/journal.pone.0081075 |
_version_ | 1782295123211583488 |
---|---|
author | Mohan, Swarna Das, Debamitra Bauer, Robert J. Heroux, Annie Zalewski, Jenna K. Heber, Simone Dosunmu-Ogunbi, Atinuke M. Trakselis, Michael A. Hildebrand, Jeffrey D. VanDemark, Andrew P. |
author_facet | Mohan, Swarna Das, Debamitra Bauer, Robert J. Heroux, Annie Zalewski, Jenna K. Heber, Simone Dosunmu-Ogunbi, Atinuke M. Trakselis, Michael A. Hildebrand, Jeffrey D. VanDemark, Andrew P. |
author_sort | Mohan, Swarna |
collection | PubMed |
description | Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. |
format | Online Article Text |
id | pubmed-3857177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38571772013-12-13 Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology Mohan, Swarna Das, Debamitra Bauer, Robert J. Heroux, Annie Zalewski, Jenna K. Heber, Simone Dosunmu-Ogunbi, Atinuke M. Trakselis, Michael A. Hildebrand, Jeffrey D. VanDemark, Andrew P. PLoS One Research Article Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. Public Library of Science 2013-12-09 /pmc/articles/PMC3857177/ /pubmed/24349032 http://dx.doi.org/10.1371/journal.pone.0081075 Text en © 2013 Mohan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mohan, Swarna Das, Debamitra Bauer, Robert J. Heroux, Annie Zalewski, Jenna K. Heber, Simone Dosunmu-Ogunbi, Atinuke M. Trakselis, Michael A. Hildebrand, Jeffrey D. VanDemark, Andrew P. Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology |
title | Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology |
title_full | Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology |
title_fullStr | Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology |
title_full_unstemmed | Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology |
title_short | Structure of a Highly Conserved Domain of Rock1 Required for Shroom-Mediated Regulation of Cell Morphology |
title_sort | structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857177/ https://www.ncbi.nlm.nih.gov/pubmed/24349032 http://dx.doi.org/10.1371/journal.pone.0081075 |
work_keys_str_mv | AT mohanswarna structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT dasdebamitra structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT bauerrobertj structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT herouxannie structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT zalewskijennak structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT hebersimone structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT dosunmuogunbiatinukem structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT trakselismichaela structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT hildebrandjeffreyd structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology AT vandemarkandrewp structureofahighlyconserveddomainofrock1requiredforshroommediatedregulationofcellmorphology |