Cargando…
Electrically Conductive Bulk Composites through a Contact-Connected Aggregate
This paper introduces a concept that allows the creation of low-resistance composites using a network of compliant conductive aggregate units, connected through contact, embedded within the composite. Due to the straight-forward fabrication method of the aggregate, conductive composites can be creat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857253/ https://www.ncbi.nlm.nih.gov/pubmed/24349239 http://dx.doi.org/10.1371/journal.pone.0082260 |
Sumario: | This paper introduces a concept that allows the creation of low-resistance composites using a network of compliant conductive aggregate units, connected through contact, embedded within the composite. Due to the straight-forward fabrication method of the aggregate, conductive composites can be created in nearly arbitrary shapes and sizes, with a lower bound near the length scale of the conductive cell used in the aggregate. The described instantiation involves aggregate cells that are approximately spherical copper coils-of-coils within a polymeric matrix, but the concept can be implemented with a wide range of conductor elements, cell geometries, and matrix materials due to its lack of reliance on specific material chemistries. The aggregate cell network provides a conductive pathway that can have orders of magnitude lower resistance than that of the matrix material - from 10(12) ohm-cm (approx.) for pure silicone rubber to as low as 1 ohm-cm for the silicone/copper composite at room temperature for the presented example. After describing the basic concept and key factors involved in its success, three methods of implementing the aggregate into a matrix are then addressed – unjammed packing, jammed packing, and pre-stressed jammed packing – with an analysis of the tradeoffs between increased stiffness and improved resistivity. |
---|