Cargando…
Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression
Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to othe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857773/ https://www.ncbi.nlm.nih.gov/pubmed/24349289 http://dx.doi.org/10.1371/journal.pone.0082457 |
_version_ | 1782295192057937920 |
---|---|
author | Albanus, Ricardo D’Oliveira Juliani Siqueira Dalmolin, Rodrigo Alves Castro, Mauro Antônio Augusto de Bittencourt Pasquali, Matheus de Miranda Ramos, Vitor Pens Gelain, Daniel Fonseca Moreira, José Cláudio |
author_facet | Albanus, Ricardo D’Oliveira Juliani Siqueira Dalmolin, Rodrigo Alves Castro, Mauro Antônio Augusto de Bittencourt Pasquali, Matheus de Miranda Ramos, Vitor Pens Gelain, Daniel Fonseca Moreira, José Cláudio |
author_sort | Albanus, Ricardo D’Oliveira |
collection | PubMed |
description | Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions. |
format | Online Article Text |
id | pubmed-3857773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38577732013-12-12 Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression Albanus, Ricardo D’Oliveira Juliani Siqueira Dalmolin, Rodrigo Alves Castro, Mauro Antônio Augusto de Bittencourt Pasquali, Matheus de Miranda Ramos, Vitor Pens Gelain, Daniel Fonseca Moreira, José Cláudio PLoS One Research Article Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions. Public Library of Science 2013-12-05 /pmc/articles/PMC3857773/ /pubmed/24349289 http://dx.doi.org/10.1371/journal.pone.0082457 Text en © 2013 Albanus et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Albanus, Ricardo D’Oliveira Juliani Siqueira Dalmolin, Rodrigo Alves Castro, Mauro Antônio Augusto de Bittencourt Pasquali, Matheus de Miranda Ramos, Vitor Pens Gelain, Daniel Fonseca Moreira, José Cláudio Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression |
title | Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression |
title_full | Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression |
title_fullStr | Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression |
title_full_unstemmed | Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression |
title_short | Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression |
title_sort | reverse engineering the neuroblastoma regulatory network uncovers max as one of the master regulators of tumor progression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857773/ https://www.ncbi.nlm.nih.gov/pubmed/24349289 http://dx.doi.org/10.1371/journal.pone.0082457 |
work_keys_str_mv | AT albanusricardodoliveira reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression AT julianisiqueiradalmolinrodrigo reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression AT alvescastromauroantonio reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression AT augustodebittencourtpasqualimatheus reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression AT demirandaramosvitor reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression AT pensgelaindaniel reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression AT fonsecamoreirajoseclaudio reverseengineeringtheneuroblastomaregulatorynetworkuncoversmaxasoneofthemasterregulatorsoftumorprogression |