Cargando…
Subglacial hydrology and the formation of ice streams
Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subgl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857858/ https://www.ncbi.nlm.nih.gov/pubmed/24399921 http://dx.doi.org/10.1098/rspa.2013.0494 |
_version_ | 1782295210239197184 |
---|---|
author | Kyrke-Smith, T. M Katz, R. F Fowler, A. C |
author_facet | Kyrke-Smith, T. M Katz, R. F Fowler, A. C |
author_sort | Kyrke-Smith, T. M |
collection | PubMed |
description | Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. |
format | Online Article Text |
id | pubmed-3857858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Royal Society Publishing. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38578582014-01-08 Subglacial hydrology and the formation of ice streams Kyrke-Smith, T. M Katz, R. F Fowler, A. C Proc Math Phys Eng Sci Research Articles Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. The Royal Society Publishing. 2014-01-08 /pmc/articles/PMC3857858/ /pubmed/24399921 http://dx.doi.org/10.1098/rspa.2013.0494 Text en http://creativecommons.org/licenses/by/3.0/ © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Kyrke-Smith, T. M Katz, R. F Fowler, A. C Subglacial hydrology and the formation of ice streams |
title | Subglacial hydrology and the formation of ice streams |
title_full | Subglacial hydrology and the formation of ice streams |
title_fullStr | Subglacial hydrology and the formation of ice streams |
title_full_unstemmed | Subglacial hydrology and the formation of ice streams |
title_short | Subglacial hydrology and the formation of ice streams |
title_sort | subglacial hydrology and the formation of ice streams |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857858/ https://www.ncbi.nlm.nih.gov/pubmed/24399921 http://dx.doi.org/10.1098/rspa.2013.0494 |
work_keys_str_mv | AT kyrkesmithtm subglacialhydrologyandtheformationoficestreams AT katzrf subglacialhydrologyandtheformationoficestreams AT fowlerac subglacialhydrologyandtheformationoficestreams |