Cargando…
Analyzing Kernel Matrices for the Identification of Differentially Expressed Genes
One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs), followed by the employment of the state-of-the-art learning machines including t...
Autores principales: | Xia, Xiao-Lei, Xing, Huanlai, Liu, Xueqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857896/ https://www.ncbi.nlm.nih.gov/pubmed/24349110 http://dx.doi.org/10.1371/journal.pone.0081683 |
Ejemplares similares
-
Oscillation matrices and kernels and small vibrations of mechanical systems
por: Gantmacher, F R, et al.
Publicado: (2002) -
Optimizing amino acid substitution matrices with a local alignment kernel
por: Saigo, Hiroto, et al.
Publicado: (2006) -
Analysis of Kernel Matrices via the von Neumann Entropy and Its Relation to RVM Performances
por: Belanche-Muñoz, Lluís A., et al.
Publicado: (2023) -
Identification and Analyzation of Differentially Expressed Transcription Factors in Endometriosis
por: Cong, Shanshan, et al.
Publicado: (2021) -
Analyzing brain structural differences associated with categories of blood pressure in adults using empirical kernel mapping-based kernel ELM+
por: Yu, Xinying, et al.
Publicado: (2019)