Cargando…
Employing a Monte Carlo Algorithm in Newton-Type Methods for Restricted Maximum Likelihood Estimation of Genetic Parameters
Estimation of variance components by Monte Carlo (MC) expectation maximization (EM) restricted maximum likelihood (REML) is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the E...
Autores principales: | Matilainen, Kaarina, Mäntysaari, Esa A., Lidauer, Martin H., Strandén, Ismo, Thompson, Robin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858226/ https://www.ncbi.nlm.nih.gov/pubmed/24339886 http://dx.doi.org/10.1371/journal.pone.0080821 |
Ejemplares similares
-
A Monte-Carlo algorithm for maximum likelihood estimation of variance components
por: Xu, S, et al.
Publicado: (1996) -
Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function
por: Vuori, Kaarina, et al.
Publicado: (2006) -
A maximum likelihood fit including Monte Carlo Statistics
por: M\"onig, K
Publicado: (1993) -
Estimation of individual animal SNP-BLUP reliability using full Monte Carlo sampling
por: Ben Zaabza, H., et al.
Publicado: (2021) -
A computationally efficient method for approximating reliabilities in large-scale single-step genomic prediction
por: Gao, Hongding, et al.
Publicado: (2023)