Cargando…

High imatinib dose overcomes insufficient response associated with ABCG2 haplotype in chronic myelogenous leukemia patients

Pharmacogenetic studies in chronic myelogenous leukemia (CML) typically use a candidate gene approach. In an alternative strategy, we analyzed the impact of single nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response to imatinib, using a DNA chip containing 857 SNPs co...

Descripción completa

Detalles Bibliográficos
Autores principales: Delord, Marc, Rousselot, Philippe, Cayuela, Jean Michel, Sigaux, François, Guilhot, Joëlle, Preudhomme, Claude, Guilhot, François, Loiseau, Pascale, Raffoux, Emmanuel, Geromin, Daniela, Génin, Emmanuelle, Calvo, Fabien, Bruzzoni-Giovanelli, Heriberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858547/
https://www.ncbi.nlm.nih.gov/pubmed/24123600
Descripción
Sumario:Pharmacogenetic studies in chronic myelogenous leukemia (CML) typically use a candidate gene approach. In an alternative strategy, we analyzed the impact of single nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response to imatinib, using a DNA chip containing 857 SNPs covering 94 drug transporter genes. Two cohorts of CML patients treated with imatinib were evaluated: an exploratory cohort including 105 patients treated at 400 mg/d and a validation cohort including patients sampled from the 400 mg/d and 600 mg/d arms of the prospective SPIRIT trial (n=239). Twelve SNPs discriminating patients according to cumulative incidence of major molecular response (CI-MMR) were identified within the exploratory cohort. Three of them, all located within the ABCG2 gene, were validated in patients included in the 400 mg/d arm of the SPIRIT trial. We identified an ABCG2 haplotype (define as G-G, rs12505410 and rs2725252) as associated with significantly higher CI-MMR in patients treated at 400 mg/d. Interestingly, we found that patients carrying this ABCG2 “favorable” haplotype in the 400 mg arm reached similar CI-MMR rates that patients randomized in the imatinib 600 mg/d arm. Our results suggest that response to imatinib may be influenced by constitutive haplotypes in drug transporter genes. Lower response rates associated with “non-favorable” ABCG2 haplotypes may be overcome by increasing the imatinib daily dose up to 600 mg/d.