Cargando…

Adiposity, inflammation, genetic variants and risk of post-menopausal breast cancer findings from a prospective-specimen-collection, retrospective-blinded-evaluation (PRoBE) design approach

Chronic internal inflammation secondary to adiposity is a risk factor for sporadic breast cancer and Post-Menopausal Breast Cancer (PMBC) is largely defined as such. Adiposity is one of the clinical criteria for the diagnosis of Metabolic Syndrome (MetS) and is a risk factor for PMBC. We examined SN...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Xiaowei Sherry, Barnholtz-Sloan, Jill, Chu, Xin, Li, Ling, Colonie, Ryan, Webster, Jessica, Smelser, Diane, Patel, Nikitaban, Prichard, Jeffery, Stark, Azadeh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858594/
https://www.ncbi.nlm.nih.gov/pubmed/24340245
http://dx.doi.org/10.1186/2193-1801-2-638
Descripción
Sumario:Chronic internal inflammation secondary to adiposity is a risk factor for sporadic breast cancer and Post-Menopausal Breast Cancer (PMBC) is largely defined as such. Adiposity is one of the clinical criteria for the diagnosis of Metabolic Syndrome (MetS) and is a risk factor for PMBC. We examined SNPs of eight genes implicated in adiposity, inflammation and cell proliferation in a Prospective-specimen-collection, Retrospective-Blinded-Evaluation (PRoBE) design approach. A total of 180 cases and 732 age-matched controls were identified from the MyCode prospective biobank database and then linked to the Clinical Decision Information System, an enterprise-wide data warehouse, to retrieve clinico-demographic data. Samples were analyzed in a core laboratory where the personnel were masked to their status. Results from multivariate logistic regression yielded one SNP (rs2922126) in the GHSR as protective against PMBC among homozygotes for the minor allele (A/A) (OR = 0.4, 95% CI 0.18-.89, P-value = .02); homozygosity for the minor allele (C/C) of the SNP (rs889312) of the gene MAP3K1 was associated with the risk of PMBC (OR = 2.41, 95% CI 1.25-4.63 P-value = .008). Advanced age was protective against PMBC (OR = 0.98, 95% CI 0.95-0.99, P-value = .02). Family history of breast cancer (OR = 2.22, 95% CI 1.14-4.43. P = .02), HRT (OR = 3.35; 95% CI 2.15-5.21, P < .001), and MetS (OR = 14.83, 95% CI 5.63-39.08, P < .001) and interaction between HRT and MetS (OR = 39.38, 95% CI 15.71-98.70, P < .001) were associated with the risk of PMBC. We did not detected significant interactions between SNPs or between the SNPs and the clinico-demographic risk factors. Our study further confirms that MetS increases the risk of PMBC and argues in favor of reducing exposure to HRT. Our findings are another confirmation that low penetrance genes involved in the inflammatory pathway, i.e. MAP3KI gene, may have a plausible causative role in PMBC. Given the fact that genetic constitutionality of individuals cannot be changed, efforts should be focused on life style modification.