Cargando…
The Exact Distribution of the Condition Number of Complex Random Matrices
Let G (m×n) (m ≥ n) be a complex random matrix and W = G (m×n) (H) G (m×n) which is the complex Wishart matrix. Let λ (1) > λ (2) > …>λ (n) > 0 and σ (1) > σ (2) > …>σ (n) > 0 denote the eigenvalues of the W and singular values of G (m×n), respectively. The 2-norm condition n...
Autores principales: | Shi, Lin, Gan, Taibin, Zhu, Hong, Gu, Xianming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859023/ https://www.ncbi.nlm.nih.gov/pubmed/24376385 http://dx.doi.org/10.1155/2013/729839 |
Ejemplares similares
-
Exact Distributions of Finite Random Matrices and Their Applications to Spectrum Sensing
por: Zhang, Wensheng, et al.
Publicado: (2016) -
Exact S-matrices and extended supersymmetry
por: Abdalla, E., et al.
Publicado: (1993) -
Condition Number Estimation of Preconditioned Matrices
por: Kushida, Noriyuki
Publicado: (2015) -
Exact S-matrices for nonsimply-laced affine Toda theories
por: Delius, G.W., et al.
Publicado: (1992) -
Correction: Condition Number Estimation of Preconditioned Matrices
por: Kushida, Noriyuki
Publicado: (2015)